Fall 2014

COURSE POLICY AND GUIDE

PHYSICS II (95.144) Physics II. Electricity and Magnetism Lecturer: Andriy Danylov Office: Olney 127 Phone (978) 934-3703 Andriy_Danylov@uml.edu

Welcome to the second semester of the two-semester sequence in freshman physics for science and engineering majors. Please read this guide carefully since it outlines the materials that will be covered this semester and explains what the Freshman Physics Team expects of you. Guide sections include:

- 1 Course Text, Website, Prerequisites, and Co-requisites
- 2. Course Description and Rationale, Goals and Student Learning Objectives
- 3. Course Outline
- 4. Course Format Lecture, Recitation, and Tutoring Interactive Lecture Format
- 5. Examinations and Examination Schedule
- 6. Homework Policy Online HW
- 7. Quiz Policy
- 8. Cancellation due to Snow
- 9. Attendance/Absence and Disabilities Policies
- 10. How Your Grade is Determined
- 11. Help If You Have a Problem
- 12. Physics Tutoring at UMass-Lowell

The Freshman Physics Team, including the Professors and the Tutoring Staff, wants you to be successful in this course! Expect to put in a lot of time - it's a challenging course. Talk to us if you start to get lost or are confused about a concept. It's your responsibility to come to us for help - it's our responsibility and pleasure to help!

1. Course Text, Prerequisites, and Co-requisites

Text: The textbook for the course is "Physics for Scientists and Engineers, a Strategic Approach," Third Edition by Randall Knight (Pearson, 2012). The text comes either as a complete book set if you are taking three semesters of physics or a volume 3 and 4 set if you are taking only one semester of physics II. More information on the textbook is available on the course website.

The **course web site**, which contains almost ALL material related to this course, can be directly accessed at:

http://faculty.uml.edu/Andriy_Danylov/Teaching/PhysicsII.aspx Here you will find textbook information, this course policy, the homework assignments for the semester, and other information about the course and the Physics II team. Lecture notes will also be posted on this website.

All homework will be submitted and graded primarily electronically via the Mastering Physics website <u>www.masteringphysics.com</u>. The course name at this website is **95144Fall2014**. So while the masteringphysics.com access kit is **REQUIRED** for the course, you are **NOT** required to necessarily buy the latest edition or the exact version of the textbook offered at the bookstore. You could purchase an electronic edition, a used earlier edition, or even a different textbook entirely (although this is not recommended). Bundled packages containing the textbook (highly recommended), masteringphysics.com access kit (required) is available from the North Campus Bookstore. More information on textbook bundles offered by the bookstore is available on the course website.

Pre-requisites and Co-requisites: All students should have successfully completed the 95.141 PHYSICS I course at UMass Lowell or its equivalent at another institution. All students must either be currently enrolled in 92.132 CALCULUS II or have successfully completed it at UMass Lowell or its equivalent at another institution. In addition, all students must either be currently enrolled in the co-requisite laboratory course 96.144 EXPERIMENTAL PHYSICS II or have successfully completed it at UMass Lowell. All equivalency determinations must be made by the department giving the corresponding course at UMass Lowell if you were not already given transfer credit upon admission to the University. Please contact the transfer credit evaluator in the appropriate department.

2. Course Description and Rationale, Goals and Objectives

Course Description and Rationale: 95.144 Physics II is the second semester of a two semester calculus based sequence for engineering and science majors. The topics which will be covered are: electricity and magnetism including Coulomb's Law, electric field, Gauss' Law, electric potential, Ohm's Law, D.C. circuits with resistors, magnetic field, current loops, Ampere's Law, Faraday's Law, inductance, Maxwell's equations, and electromagnetic waves, optics including reflection, refraction, interference, and diffraction. Prerequisite: 95.141. Co-requisites: 92.132, 96.144.

<u>Course Goals</u>: The introductory physics course sequence for engineers and scientists is intended:

a) to help you to obtain a basic familiarity with the observations and experimental results on natural phenomena which occur both on the scale of "ordinary sized" objects traveling at "ordinary speeds" (CLASSICAL PHYSICS) as well as phenomena which occur outside this range (MODERN PHYSICS);

b) to develop a working knowledge of the small number of fundamental theories which explain the diverse phenomena which occur in

nature by applying them to derive the formulas which apply to particular situations using rigorous problem solving methods.

In particular in 95.144 Physics II you will develop an understanding of the phenomena of classical optics, classical electromagnetism.

<u>Student Learning Objectives:</u> The following are some examples of the specific learning objectives on which you will be tested in the homework assignments, quizzes, three one hour examinations and the final examination (The Learning Objectives are listed at the beginning of each section of the lecture notes.):

a) To be able to demonstrate your understanding of the experiments and concepts underlying optics, electromagnetic theory by correctly answering multiple choice questions in the examinations on these topics which are presented in the textbook and lectures.

b) To be able to calculate the interference and diffraction maximum and minimum points on a screen due to the passage of electromagnetic waves through a single slit, pair of slits or a grating,

c) To be able to calculate the total force on a test charge and the electric field due to a set of charges (point or continuous) using the superposition principle for forces and fields,

d) To be able to calculate the total electric potential due to a set of charges (point or continuous) using the superposition principle for electric potentials,

e) To be able to apply Gauss' law or Ampere's law to uniform, symmetrical charge or current densities and derive the formula for the resulting electric or magnetic fields,

f) To be able to calculate the electromagnetic force (Lorentz force) on a test charge (stationary or moving at a constant speed) due to applied electric or magnetic fields,

g) To be able to calculate the acceleration, velocity and position of a test charge as a function of time due to a constant electromagnetic force,

h) To be able to apply the Faraday or Ampere-extended laws to time varying magnetic or electric fluxes and derive the formulas for the resulting induced electric or magnetic fields and forces,

i) To be able to write the four Maxwell equations in integral form and use them to calculate the properties of electromagnetic waves,

3. Course Outline*

Lecture	Sections in Book	Material Description	
L1	Chapter 25:1-5	ELECTRIC CHARGE	
L2	Chapter 26: 1-3	ELECTRIC FIELDS	
L3	Chapter 26: 4-6	ELECTRIC FIELDS	
L4	Chapter 27: 1-3	GAUSS ' LAW	
L5	Chapter 27: 4-6	GAUSS' LAW	
L6	Chapter 28: 1,2,4	ELECTRIC POTENTIAL	
L7	Chapter 28: 5-7	ELECTRIC POTENTIAL	
L8	Chapter 29.1-3	POTENTIAL AND FIELD	
L9	Chapter 29.4-6	POTENTIAL AND FIELD	
L10	Chapter 30.1-5	ELECTRIC CURRECT, RESISTANCE	
L11	Chapter 31: 1-4	DIRECT-CURRENT CIRCUITS	
Oct 14	EXAM I	CH.25-29	
L12	Chapter 31: 5-9	DIRECT-CURRENT CIRCUITS	
L13	Chapter 32: 1-6	MAGNETISM	
L14	Chapter 32: 7-9	MAGNETISM	
L15	Chapter 33: 1-7	ELECTROMAGNETIC INDUCTION	
L16	Chapter 33: 8-10	ELECTROMAGNETIC INDUCTION	
L17	Chapter 34: 1-4	MAXWELL'S EQUATIONS	
L18	Chapter 34: 5-6	MAXWELL'S EQUATIONS	
Nov 14	EXAM II	CH.30-33	
RECIT	Chapter 20	TRAVELING WAVES	
RECIT	Chapter 21	SUPERPOSITION	
L19	Chapter 22:1-3	WAVE OPTICS	
L20	Chapter 22: 4-5	WAVE OPTICS	
L21	Chapter 23: 1-3	RAY OPTICS	
L22	Chapter 23: 4-6	RAY OPTICS	
L23	Chapter 23: 7,8	RAY OPTICS	
L24	Chapter 24:1	OPTICAL INSTRUMENT	
	FINAL EXAM		

4. Course Format - Lecture, Recitation, and Tutoring

The course meets two times per week **in Olney 150**. The lectures will cover new material and the recitation classes will be used to discuss the lecture material, work out sample problems, and administer weekly quizzes. Keep all course material in a folder or binder in an organized fashion. Organization is a major key to success in this course.

There will be two exams during the semester and a Final. The two exams will be given during lecture times. See the next section on exams for the schedule.

^{*} May be modified as Semester unfolds

Quizzes and Homework are discussed below. Your instructor is happy to go over a particular homework problem or concept during his/her office hours. **Free tutoring is available** at the Physics Department tutoring center (not in a Summer semester) or in the Learning Center. There will be **evening review sessions before each exam.** See sections below for more details.

5. Examinations and Examination Schedule

The common exams for all sections will be given during lecture times on the dates given below. In addition, there will be a 3 hr final examination during finals week. The place and time for the final will be posted later in the semester with the finals schedule. You are required to attend each exam at the officially announced time.

For each **exam** session, you must bring pencils, erasers and a **calculator**. Only ordinary calculators are allowed. Alphanumeric calculators (those that include written formulas in their display modes) are NOT permitted. All formulae needed for an exam are provided on sheets attached to the exam.

Exam Schedule- Fail 2014					
Date Exam		Material Covered			
Oct 14 Exam 1 Chapters 25 – 29		Chapters 25 – 29			
Nov 14 Exam 2 Chapters 30 -		Chapters 30 - 33			
Not Set	Final	Chapters 20-34			
		(exclusions will be announced)			

Exam Schedule- Fall 2014**

6. Homework:

Regular ONLINE Homework Assignments

Regular homework assignments, typically ten problems a week, will also be done ONLINE at <u>www.masteringphysics.com</u>, course **95144Fall2014** (course ID: DANYLOVFALL2014). These will be due at the end of each week (usually every Sunday at 11.59 pm), and will focus on the material covered in that week. These will constitute 100% of your final homework grade. For these, you will be allowed 3 attempts to input the correct answer (a final incorrect answer will cost you 20% of the grade for that problem). Your total HW grade will be reduced 25% for each day past the due date that the HW is submitted.

You should be able to see your ONLINE HW scores as soon as you finish the HW set.

You have to do many more than just the assigned homework problems to learn the material in the course. Problem solving skills is one of the most important learning goals of this course. One of the best ways to do homework is to form small groups and work the problems together. Remember, the **Mastering Physics** software randomizes the variables for each problem, so everyone will

^{**} The Schedule may change as a result of changes in the University Schedule.

have different answers for each problem. However, the way you solve the problems will be similar, and this can be worked out in groups. Assigning one or two problems to each member in the group is NOT an effective way of doing homework! In order to do well in this course you must have a good understanding of the homework, so if you work in a group, make sure you understand how to do each problem! <u>Working on Physics as a team will improve your grade.</u>

We will also have exam review sessions with a physics instructor in the evenings prior to the scheduled exams. Dates and times will be announced.

7. Quiz Policy

Recitation instructors will typically give at least <u>one quiz per week</u>. These can be <u>announced or unannounced</u>. They will typically cover recent material and be similar to the homework problems. Students must come to class with calculators. Unexcused absences for a quiz will result in a grade of "0" for that particular quiz.

8. Cancellation Due to Closing of University

If the University closes due to a snow emergency we will pick up where we left off. At the next lecture a revised schedule will be posted to work around the lost day. If the closing causes a cancellation of an exam, the exam will be rescheduled and the revised date announced during the first lecture scheduled after the cancelled day.

9. Attendance/Absence and Disabilities Policies

Attendance/Absence. Attendance is required in all recitations and lectures. There are no make-up examinations. Illness on the day of a major examination must be verified by submission of a letter from a physician or nurse showing that you were seen prior to or on the day of the examination and attest that your illness made you unable to take the examination. Any other unusual situation needs your recitation instructor's approval in writing. All other absences, i.e. varsity sports, family weddings etc., must be made one week in advance by written request and approved by your instructor. Only one <u>approved</u> major examination absence is allowed. In that case your grade will require increased emphasis on the other in-class exams or the final examination (see below).

Disabilities. If you have either a learning disability or severe physical handicap you may be eligible for extra time during exams and the final. Discuss your situation with the UMass-Lowell Counseling Center (978) 934-4331. A properly filled out Learning Disability Accommodation Notification form must be filled out and a copy given to your recitation AND lecture instructor in order for us to accommodate your needs. All information will be kept confidential.

10. How Your Grade is Determined

Your letter grade is based on the total points you earn, as follows:

	100 pts	Homework
	100 pts	Quizzes
	100 pts	Exam 1
	100 pts	Exam 2
	<u>200 pts</u>	Final
Total	600 pts	

At the end of the semester, after all grades including the FINAL EXAM are added together, your lecture instructor in consultation with all the recitation instructors will determine the point cutoffs for the various letter grades. The following table provides the cutoffs that were used in the previous few semesters, and is most likely to be continued this semester. You can use the table to estimate your letter grade as you progress through the course by comparing your point total (or percentage) with the expected cut-offs.

Grade Conversion Table*

	%		Approx	x. Points
A	80% - 1	100%	<u>></u> 480	
A-	75% -	79%	450	- 480
B+	70% -	74%	420	- 450
В	65% -	69%	390	- 420
B-	60% -	64%	360	- 390
C+	55% -	59%	330	- 360
С	50% -	54%	300	- 330
C-	45% -	49%	270	- 300
D+	40% -	44%	240	- 270
D	35% -	39%	210	- 240
F	0% -	34%	<210	

*(The cut-offs for this semester determined at the end of the course may differ slightly from that listed above)

Note: An **<u>unexcused</u>** absence from an Exam will result in a "0" for the exam. An unexcused absence on the final will result in a course grade of "F".

11. Help if You Have a Problem

If you have a problem, your recitation instructor is the first person you should <u>contact</u>. For help on the course work, arrange a meeting with your recitation instructor or one of the tutoring centers. <u>The instructors will provide you with their</u> <u>specific office hours</u>. They will also see you by appointment at mutually

convenient times if you can't make office hours. For major unresolved problems contact Prof. Chowdhury (contact info at the top of this document).

12. Academic Conduct and Integrity

You are responsible for proper academic conduct - please refer to the university's academic integrity policy at the following URL:

http://www.uml.edu/catalog/undergraduate/policies/academic_dishonesty.htm

The basic rule of thumb is simple: you should not try to receive credit for work you have not performed. This means, e.g., that you must do your own homework assignments and take your own exams and quizzes. If you are struggling in the course, meet with your recitation instructor to figure out how we can best help you. There are no easy (ethical or otherwise) ways to pass this course, but we are dedicated to ensure you have the best support possible to succeed.

13. Physics Tutoring at UMass-Lowell

The Center for Learning and Academic Support Services, Southwick 308 provides peer drop-in tutoring conducted by senior undergraduates who have been recommended by faculty. It is your responsibility to figure out which of the many aids offered (recitation instructor office hours, Physics department tutoring center and UML tutoring center) work best for you.

http://www.uml.edu/CLASS/Tutoring/Drop-In-Tutoring.aspx

See Suzanne Gamache at the Tutoring Center (3rd floor Southwick) for more information and an up-to-date schedule on physics tutoring.

Contact: Suzanne Gamache@uml.edu; (978) 934-2947