95.612. Classical Mechanics.

Final Exam. May 3, 2013

Open book exam.

1. ($\mathbf{1 0}$ points) Consider a particle m moving under an influence of the inverse-square law which is described by the Hamiltonian

$$
H=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2} / q_{1}^{2}\right)-\frac{\lambda m}{q_{1}}
$$

Where \boldsymbol{q}_{1} and $\boldsymbol{q}_{\mathbf{2}}$ are the generalized coordinates.
a) What is the Hamilton-Jacobi equation for this system?
b) Solve this equation to find Hamilton's principal function, S.
c) Deduce the dynamical motion of the system (you need not evaluate any integrals).
2. ($\mathbf{1 0}$ points) Two masses \boldsymbol{m}_{1} and \boldsymbol{m}_{2} are connected by a massless spring of force constant \boldsymbol{k} and unstretched length \boldsymbol{a}. Oscillations are small.

a) Write the Lagrangian of the system
b) Find the normal mode frequencies
c) Find the normal mode eigenvectors and the general solution
d) Construct the modal matrix \mathbf{A}
e) Find the normal coordinates.
3. (10 points) The Hamiltonian for a particle moving in a vertical uniform gravitational field \boldsymbol{g} is

$$
H=\frac{p^{2}}{2 m}+m g q
$$

where q is the altitude above the ground. We want to find any canonical transformation from old variables (q, p) to new variables (Q, P) which provides a cyclic coordinate. To do this, define new variables as

$$
Q=b p \quad P=a H
$$

where $\boldsymbol{a}, \boldsymbol{b}$ are constants.
a) Determine any combination of constants a and b, which provides a canonical transformation.
b) Find the type 1 generating function, $F_{1}(q, Q)$
c) Use the relation $F_{2}(q, P)=F_{1}+P Q$ to find the type 2 generating function and check your result by showing that F_{2} indeed generates the same transformation
d) Find the new Hamiltonian K for the new canonical variables Q, P. Are there any cyclic variables?
e) Solve Hamilton equations for the new canonical variables
f) Find the original variables q, p as a function of time
4. ($\mathbf{1 0}$ points) An inextensible massless string of length \boldsymbol{l} passes through a hole in a frictionless table. A point mass $\boldsymbol{m}_{\mathbf{1}}$ at one end moves on the frictionless table and a point mass $\boldsymbol{m}_{\mathbf{2}}$ hangs from the other end. Assume that $\boldsymbol{m}_{\mathbf{1}}$ experiences only a radial motion and $\boldsymbol{m}_{\mathbf{2}}$ moves only in a vertical line.
a) Write down the Lagrangian of the system Using the method of undetermined multipliers
b) Write down the modified Lagrange equations and solve them for \ddot{q}_{i} and the Lagrange multiplier. Write magnitude of
 the tension of the string.

