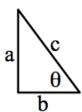
Physics I. Formula Sheet


Right triangle:

$$\sin \theta = a/c$$

$$\cos \theta = b/c$$

$$\tan \theta = a/b$$

$$c^{2} = a^{2} + b^{2}$$

Quadratic Formula:

$$Ax^{2} + Bx + C = 0 \text{ has solutions:}$$

$$x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

Misc Formulas:

Circumference of a circle = $2\pi R$ Area of a circle = πR^2 Surface Area of a Sphere = $4\pi R^2$ Volume of sphere = $(4/3)\pi R^3$ Volume of cylinder = $\pi R^2 L$

Differentiation:

$$\frac{dx^n/dx = nx^{n-1}}{dx^n/dx = nx^{n-1}} (n \neq 0)$$

$$\frac{d\cos(x)}{dx} = -\sin(x) \quad (x \text{ in radians})$$

$$\frac{d\sin(x)}{dx} = \cos(x) \quad (x \text{ in radians})$$

$$\frac{d(f(x) + g(x))}{dx} = \frac{df(x)}{dx} + \frac{dg(x)}{dx}$$

Integration:
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

1-D Motion:

displacement = Δx

$$v_{average}$$
: $\Delta x/\Delta t = (x_2 - x_1)/(t_2 - t_1)$
 $a_{average}$: $\Delta v/\Delta t = (v_2 - v_1)/(t_2 - t_1)$

Given x(t)

$$v(t) = dx/dt$$
 (instantaneous)
 $a(t) = dv/dt = d^2x/dt^2$ (instantaneous)

1-D Motion with Const. Acc.:

Projectile Motion:

$$\frac{1}{x(t) = x_0 + v_{0x}t}$$

$$v_x(t) = v_{0x}$$

$$a_x(t) = 0$$

$$y(t) = y_0 + v_{0y}t + (1/2) a_y t^2$$

$$v_y(t) = v_{0y} + a_y t$$

$$a_y(t) = a_y$$

Acceleration due to gravity:

 $g = 9.8 \text{ m/s}^2 \text{ downward}$

Equations connect. trans./rotat. motion

$$v_{tan} = R\omega$$
$$a_{tan} = R\alpha$$

Rotat. kinematic eq-ns with const. angular acceleration

$$\omega(t) = \omega_0 + \alpha t$$

$$\theta(t) = \theta_0 + \omega_0 t + (1/2)\alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0)$$

Centripetal acceleration:

$$a_r = v^2/R$$
; $a_R = \omega^2 R$

Newton 2nd law

$$\sum \vec{F} = m\vec{a}$$

Friction Forces:

$$F_{S} \leq \mu_{S} N$$
$$F_{k} = \mu_{k} N$$