Physics I. Formula Sheet

Right triangle:
$\sin \theta=a / c$
$\cos \theta=b / c$
$\tan \theta=a / b$
$c^{2}=a^{2}+b^{2}$

Quadratic Formula:
$A x^{2}+B x+C=0$ has solutions:
$x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$
Misc Formulas:
Circumference of a circle $=2 \pi \mathrm{R}$
Area of a circle $=\pi \mathrm{R}^{2}$
Surface Area of a Sphere $=4 \pi \mathrm{R}^{2}$
Volume of sphere $=(4 / 3) \pi R^{3}$
Volume of cylinder $=\pi \mathrm{R}^{2} \mathrm{~L}$
Differentiation:
$d x^{n} / d x=n x^{n-1} \quad(n \neq 0)$
$d \cos (x) / d x=-\sin (x) \quad$ (x in radians)
$d \sin (x) / d x=\cos (x) \quad(x$ in radians)
$d(f(x)+g(x)) / d x=d f(x) / d x+d g(x) / d x$
Integration:

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C
$$

1-D Motion:
displacement $=\Delta \mathrm{x}$
$v_{\text {average: }}: \Delta x / \Delta t=\left(x_{2}-x_{1}\right) /\left(t_{2}-t_{1}\right)$
$a_{\text {average: }}: \Delta v / \Delta t=\left(v_{2}-v_{1}\right) /\left(t_{2}-t_{1}\right)$
Given $x(t)$
$v(t)=d x / d t$ (instantaneous)
$a(t)=d v / d t=d^{2} x / d t^{2}$ (instantaneous)
1-D Motion with Const. Acc.:
$x(t)=x_{0}+v_{0 x} t+(1 / 2) a t^{2}$
$v(t)=v_{0}+a t$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
Projectile Motion:
$x(t)=x_{0}+v_{0 x} t$
$v_{x}(t)=v_{0 x}$
$a_{x}(t)=0$
$y(t)=y_{0}+v_{0 y} t+(1 / 2) a_{y} t^{2}$
$v_{y}(t)=v_{0 y}+a_{y} t$
$a_{y}(t)=a_{y}$
Acceleration due to gravity:
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward
Equations connect. trans./rotat. motion $v_{t a n}=R \omega$
$a_{t a n}=R \alpha$
Rotat. kinematic eq-ns with const. angular acceleration
$\omega(t)=\omega_{0}+\alpha t$
$\theta(t)=\theta_{0}+\omega_{0} t+(1 / 2) \alpha t^{2}$
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha\left(\theta-\theta_{0}\right)$
Centripetal acceleration:
$a_{r}=v^{2} / R ; \quad a_{R}=\omega^{2} R$
Newton $2^{\text {nd }}$ law
$\sum \vec{F}=m \vec{a}$

Friction Forces:

$F_{S} \leq \mu_{S} N$
$F_{k}=\mu_{k} N$

Work and Kinetic Energy

$W=\vec{F} \cdot \vec{s}$
$W=\int_{x_{i}}^{x_{f}} F_{x} d x$
$K=(1 / 2) \mathrm{mv}^{2}$
$W_{\text {net }}=\Delta K$
$\Delta \mathrm{K}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}$
Potential Energy:
For gravity on earth's surface:
$\mathrm{F}=\mathrm{mg}$
$\mathrm{U}(\mathrm{y})=\mathrm{U}_{0}+\mathrm{mgy}$
For a spring:
$\mathrm{F}=-\mathrm{kx}$
$\mathrm{U}(\mathrm{x})=(1 / 2) \mathrm{kx}^{2}$
$W=-\frac{k}{2}\left(x_{f}^{2}-x_{i}^{2}\right)$
With conservative forces only:
$\mathrm{E}_{\mathrm{tot}}=\mathrm{K}+\mathrm{U}$
$E_{f}=E_{i}$
With non-conservative forces:
$E_{f}=E_{i}+W_{N C}$

Power

$\mathrm{P}_{\text {avg }}=\mathrm{W} / \mathrm{t}$
$\mathrm{P}=\mathrm{dW} / \mathrm{dt}$
$P=\vec{F} \bullet \vec{v}$
$\vec{a} \cdot \vec{b}=a b \cos \theta$
$\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$

