Physics I. Formula Sheet

Right triangle:

$$\sin \theta = a/c$$

$$cos \theta = b/c$$

$$\tan \theta = a/b$$

$$c^2 = a^2 + b^2$$

$a \frac{c}{\theta}$

Quadratic Formula:

$$Ax^2 + Bx + C = 0$$
 has solutions:

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Misc Formulas:

Circumference of a circle = $2\pi R$

Area of a circle = πR^2

Surface Area of a Sphere = $4\pi R^2$

Volume of sphere = $(4/3)\pi R^3$

Volume of cylinder = $\pi R^2 L$

Differentiation:

$$dx^n/dx = nx^{n-1} \ (n \neq 0)$$

$$d\cos(x)/dx = -\sin(x)$$
 (x in radians)

$$dsin(x)/dx = cos(x)$$
 (x in radians)

$$d(f(x) + g(x))/dx = df(x)/dx + dg(x)/dx$$

Integration: $\int x'$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

1-D Motion:

displacement = Δx

$$v_{average}$$
: $\Delta x/\Delta t = (x_2 - x_1)/(t_2 - t_1)$

$$a_{average}$$
: $\Delta v/\Delta t = (v_2 - v_1)/(t_2 - t_1)$

Given x(t)

$$v(t) = dx/dt$$
 (instantaneous)

$$a(t) = dv/dt = d^2x/dt^2$$
 (instantaneous)

1-D Motion with Const. Acc.:

$$x(t) = x_0 + v_{0x}t + (1/2) at^2$$

$$v(t) = v_0 + at$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Projectile Motion:

$$x(t) = x_0 + v_{0x}t$$

$$v_x(t) = v_{0x}$$

$$a_x(t) = 0$$

$$y(t) = y_0 + v_{0y}t + (1/2) a_y t^2$$

$$v_v(t) = v_{0v} + a_v t$$

$$a_{v}(t)=a_{v}$$

Acceleration due to gravity:

$$g = 9.8 \text{ m/s}^2 \text{ downward}$$

Equations connect. trans./rotat. motion

$$v_{tan} = R\omega$$

$$a_{tan} = R\alpha$$

Rotat. kinematic eq-ns with const.

angular acceleration

$$\omega(t) = \omega_0 + \alpha t$$

$$\theta(t) = \theta_0 + \omega_0 t + (1/2) \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha (\theta - \theta_0)$$

Centripetal acceleration:

$$\overline{a_r = v^2/R}$$
; $a_R = \omega^2 R$

Newton 2nd law

$$\sum_{\vec{r}} \vec{F} = m\vec{a}$$

Friction Forces:

$$F_S \leq \mu_S N$$

$$F_k = \mu_k N$$

Work and Kinetic Energy

$$W = \overrightarrow{F} \cdot \overrightarrow{s}$$

$$W = \int_{x_f}^{x_f} F_x dx$$

$$K = (1/2) \text{mv}^2$$

$$W_{net} = \Delta K$$

$$\Delta K = K_{\rm f} - K_{\rm i}$$

Potential Energy:

For gravity on earth's surface:

F=mg

$$U(y) = U_0 + mgy$$

For a spring:

$$F = -kx$$

$$U(x) = (1/2)kx^2$$

$$W = -\frac{k}{2}(x_f^2 - x_i^2)$$

With conservative forces only:

$$E_{tot} = K + U$$

$$E_f = E_i$$

With non-conservative forces:

$$E_f = E_i + W_{NC}$$

Power

$$P_{avg} = W/t$$

$$P = dW/dt$$

$$P = \vec{F} \cdot \vec{v}$$

$$\vec{a} \cdot \vec{b} = ab \cos \theta$$

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$