Classical Mechanics

Chapter 3. Homework 3
(Due to February 23, 2017).
Central Forces

Problem 3A.

(10 points)
(a) Determine the trajectory $r(\theta)$ for a particle of mass \boldsymbol{m} moving in an oscillator potential $V(r)=k r^{2} / 2$, where \boldsymbol{k} is a constant.
(b) Demonstrate by converting to Cartesian coordinates that the trajectory is an ellipse with semi-major axis $\quad a=r_{0} / \sqrt{1-\varepsilon}$, where

$$
\left.\varepsilon=\sqrt{1-\left(k l^{2} / m E^{2}\right.}\right) ; \quad r_{0}=l / \sqrt{m E}
$$

(make a convenient choice of a constant of integration $\theta_{0}=\pi / 4$)
(c) Sketch the trajectory. Show parameters (semi-major/semi-minor axis, the force center, and r_{0})

Problem 3B.

An inextensible massless string of length \boldsymbol{l} passes through a hole in a frictionless table. A point mass \boldsymbol{m} at one end moves on the table and a point mass \boldsymbol{m} hangs from the other end. Assume that hanging \boldsymbol{m} moves in a vertical line only.
a) Clearly define the generalized coordinates;
b) Write down the potential energy of the system. Is the force central?
c) Write the Lagrangian of the system;

d) Find the equations of motion;
e) Integrate the equations of motion to get the two first integrals of motion;
f) Write the effective one-dimentional potential energy and plot it with respect to a distance from m, which is on the table, to the hole in the table;
g) If mass m , which is on the table, moves in a circle, what is the radius of the circle?
h) If mass on the table undergoes small radial oscillations around a stable circular orbit, determine the effective spring constant and angular frequency for small oscillations;
i) Is this perturbed circular orbit closed?
j)

Scattering

Problem 3C.
Determine the differential cross section and the total cross section for scattering of particles from a perfectly rigid sphere of radius a. Assume the particles obey "the law of reflection" and the potential is

$$
\begin{aligned}
& V(r)=0, r>a \\
& V(r)=\infty, r \leq a
\end{aligned}
$$

Problem 3D.

A rocket with velocity \boldsymbol{v}_{0} (at r equals infinity) and impact parameter \boldsymbol{s} approach a planet of radius \boldsymbol{R} and mass \boldsymbol{M}. What is the condition that the rocket will strike the planet?

Problem 3E.

A uniform beam of particles with energy \boldsymbol{E} is scattered by a repulsive central potential $(r)=\gamma / r^{2}$. Derive the differential elastic cross section

$$
\frac{\gamma \pi^{2}}{E \theta^{2} \sin \theta} \frac{\pi-\theta}{(2 \pi-\theta)^{2}}
$$

where θ is a scattering angle. Sketch carefully the angular dependence. Discuss the total cross section. What happens if the potential is attractive $(\gamma<0)$?

