Classical Mechanics

Chapter 8. The Hamilton Equations of Motion
 Homework 4

(Due to March 28, 2017).

(10 points)

Problem 4A.
A spherical pendulum consists of a particle of mass \boldsymbol{m} in a gravitational field constrained to move on a surface of a sphere of radius \boldsymbol{l}. Use the polar angle $\boldsymbol{\theta}$ (measured from the downward vertical) and the azimuthal angle φ to obtain the equations of motion in the Hamiltonian formulation. Expand the Hamiltonian to second order about uniform circular motion with $\boldsymbol{\theta}=\boldsymbol{\theta}_{\boldsymbol{0}}$ and show that the resulting expression is just that for a simple harmonic oscillator with

$$
\omega^{2}=\left[g / l \cos \theta_{0}\right]\left(1+3 \cos ^{2} \theta_{0}\right)
$$

Problem 4B.
(10 points)
A dynamical system has the Lagrangian

$$
L=\frac{1}{2}\left(\dot{q}_{1}^{2}+\frac{\dot{q}_{2}^{2}}{a+b q_{1}^{2}}\right)-\frac{1}{2}\left(k_{1} q_{1}^{2}+k_{2}\right)
$$

Where $\boldsymbol{a}, \boldsymbol{b}$, and $\boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\boldsymbol{2}}$ are constants.
a) Find a Hamiltonian corresponding to this Lagrangian.
b) What quantities are conserved?
c) Find the equations of motion in the Hamiltonian formulation and solve them.

Problem 4C.
(10 points)

Consider the motion of a particle P of mass m moving in the plane under the influence of a force of magnitude $\alpha m / r^{2}$ directed towards a fixed point O , where r is the distance from O to P . Where α is a constant. Assume that the potential energy is zero as $r \rightarrow \infty$.
a) Find a Lagrangian.
b) Find a Hamiltonian corresponding to this Lagrangian.
c) What quantities are conserved?
d) Find the equations of motion in the Hamiltonian formulation.
e) Write down the equation for r

