Classical Mechanics

Chapter 9. Canonical Transformations.

Homework 5
(Due to April 5, 2018).

Problem 5A.

(10 points)
Construct from the first principles the Hamiltonian for a 1D harmonic oscillator of mass \boldsymbol{m} and spring constant \boldsymbol{k}. Determine the value of the constant \boldsymbol{C} such that the following equations define a canonical transformation from the old variables (q, p) to the new variables (Q, P):

$$
\begin{aligned}
& Q=C(p+i m \omega q) \\
& P=C(p-i m \omega q)
\end{aligned}
$$

Where $\omega=\sqrt{k / m}$. What is the generating function for this transformation? Find Hamilton's equations of motion for the new variables and integrate them. Hence find the solution to the original problem.

Problem 5B.

The Hamiltonian for a particle moving in a vertical uniform gravitational field \boldsymbol{g} is

$$
H=\frac{p^{2}}{2 m}+m g q
$$

where q is the altitude above the ground. We want to find any canonical transformation from old variables (q, p) to new variables (Q, P) which provides a cyclic coordinate. To do this, define new variables as

$$
Q=b p \quad P=a H
$$

where $\boldsymbol{a}, \boldsymbol{b}$ are constants.
a) Determine any combination of constants a and b, which provides a canonical transformation.
b) Find the type 1 generating function, $F_{1}(q, Q)$
c) Use the relation $F_{2}(q, P)=F_{1}+P Q$ to find the type 2 generating function and check your result by showing that F_{2} indeed generates the same transformation
d) Find the new Hamiltonian K for the new canonical variables Q, P.

Are there any cyclic variables?
e) Solve Hamilton equations for the new canonical variables

Find the original variables q, p as a function of time

