Classical Mechanics

Chapter 10. Hamilton-Jacobi theory. Homework 6
(Due to April 12, 2018).

Problem 6A.

(10 points)
Consider the physical system described by the following kinetic energy T and potential energy V

$$
T=\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)\left(q_{1}^{2}+q_{2}^{2}\right) \quad V=\left(q_{1}^{2}+q_{2}^{2}\right)^{-1}
$$

Where q_{1} and q_{2} are the generalized coordinates.
a) What is the Hamilton-Jacobi equation for this system?
b) Solve this equation to find Hamilton's principal function, S.
c) Deduce the dynamical motion of the system
(you need not evaluate any definite integrals).

Problem 6B.

A particle of mass m is moving in 3D under the influence of a force field, of potential energy $V(x, y, z)=\frac{a}{2} x^{2}+\frac{b}{2} z^{2}$, where \boldsymbol{a} and \boldsymbol{b} are positive constant. There is no gravitational field.
a) Find the Hamiltonian
b) Use the Hamilton-Jacobi theory to solve the problem.

