Lecture 22

Chapter 21

Interference

Course website:
http://faculty.uml.edu/Andriv_Danylov/Teaching/PhysicsII
Lecture Capture:
http://echo360.uml.edu/danylov201415/physics2spring.html

Interference

A standing wave is the interference pattern produced when two waves of equal frequency travel in opposite directions.

In this section we will look at the interference of two waves traveling in the same direction.

$$
y_{R}=\operatorname{aSin}(k x-\omega t) \quad y_{R}=\operatorname{aSin}(k x-\omega t)
$$

Interference in One Dimension

The pattern resulting from the superposition of two waves is often called interference. In this section we will look at the interference of two waves traveling in the same direction.

Constructive interference
These two waves are in phase.
Their crests are aligned.

The resulting amplitude is $A=2 a$ for maximum constructive interference.

Destructive interference

These two waves are out of phase. The crests of one wave are aligned with the troughs of the other.

Wave 2

The resulting amplitude is $A=0$ for perfect destructive interference

Let's describe 1D interference mathematically

Consider two traveling waves. They have:
Snapshot graph
x_{2}

1. The same direction, $+x$ direction
2. The same amplitude, a
3. The same frequency, ω

Let's find a displacement at point P at time t :

Speaker 2 Speaker 1
Point of detection

$$
y(t)=y_{1}\left(x_{1}, t\right)+y_{2}\left(x_{2}, t\right)=a \sin (\underbrace{k x_{1}-\omega t+\varphi_{10}}_{\varphi_{1}})+a \sin (\underbrace{k x_{2}-\omega t+\varphi_{20}})
$$

Using a trig identity: $\boldsymbol{\operatorname { s i n }} \varphi_{1}+\boldsymbol{\operatorname { s i n }} \varphi_{2}=2 \cos \left[\frac{\varphi_{1}-\varphi_{2}}{2}\right] \sin \left[\frac{\varphi_{1}+\varphi_{2}}{2}\right]$

$$
\begin{gathered}
\boldsymbol{y}(\boldsymbol{t})=2 \boldsymbol{a} \cos \left[\frac{\Delta \varphi}{2}\right] \sin \left[k\left(\frac{x_{1}+x_{2}}{2}\right)-\omega t+\left(\frac{\varphi_{10}+\varphi_{20}}{2}\right)\right] \\
\boldsymbol{y}(\boldsymbol{t})=\left(2 \boldsymbol{a} \cos \left[\frac{\Delta \varphi}{2}\right]\right) \sin \left[k \boldsymbol{x}_{\boldsymbol{a v g}}-\omega t+\boldsymbol{\varphi}_{\boldsymbol{a v g}}{ }^{\mathbf{0}}\right)
\end{gathered}
$$

Constructive/destructive interference

$y(t)=\left[2 a \cos \left(\frac{\Delta \phi}{2}\right)\right]$ sing $\left(k x_{\text {avg }}-\omega t+\left(\phi_{0}\right)_{\text {avg }}\right)$ It is still a traveling wave
The amplitude: $\boldsymbol{A}=\left|2 \boldsymbol{a} \cos \left[\frac{\Delta \varphi}{2}\right]\right| \begin{aligned} & \text { where } \Delta \phi=\phi_{1}-\phi_{2} \text { is the phase difference } \\ & \text { between the two waves }\end{aligned}$

- The amplitude has a maximum value $\boldsymbol{A}=\mathbf{2 a}$ if

$$
\cos (\Delta \phi / 2)= \pm 1 . \Rightarrow \frac{\Delta \varphi}{2}=m \pi, \quad \text { where } m=0,1,2, \ldots
$$

Conditions for constructive interference: $\Delta \varphi=2 m \pi$

- Similarly, the amplitude is zero, $\boldsymbol{A}=\mathbf{0}$ if $\cos (\Delta \phi / 2)=0 . \Rightarrow \Delta \varphi / 2=\left(m+\frac{1}{2}\right) \pi, \quad$ where $m^{2}=0,1,2, \ldots$

Conditions for destructive interference $\Delta \varphi=\left(m+\frac{1}{2}\right) 2 \pi$

Department of Physics and Applied Physics

Let's look deeper in $\Delta \varphi$

$\Delta \phi=\phi_{2}-\phi_{1}$ is the phase difference between the two waves.

$$
\begin{array}{r}
\Delta \varphi=\left(k x_{2}-\omega / t+\varphi_{20}\right)-\left(k x_{1}-\omega / t+\varphi_{10}\right)=k\left(x_{2}-x_{1}\right)+\left(\varphi_{20}-\varphi_{10}\right)=k \Delta x+\Delta \varphi_{0} \\
\Delta \varphi=\frac{2 \pi}{\lambda} \Delta x+\Delta \varphi_{0} \quad k=\frac{2 \pi}{\lambda} \\
\end{array}
$$

So, there are two contributions to the phase difference:

$$
\begin{array}{ll}
\text { 1. } \Delta x=x_{2}-x_{1} & \text { - pathlength difference } \\
\text { 2. } \Delta \varphi_{0}=\varphi_{20}-\varphi_{10} & \text {-- inherent phase difference }
\end{array}
$$

Inherent phase difference

$$
\Delta \varphi_{0}=\varphi_{20}-\varphi_{10}
$$

Speaker $1 /$ These are identical sources: $\operatorname{Sin}(x)$

Speaker 2

$\Delta \varphi_{0}=0$

These are not identical sources: out of phase

We have to shift - Sin by π to get Sin (to overlap them), so
$\Delta \varphi_{0}=\pi$

We have to shift
Cos by $\pi / 2$ to get Sin (to overlap them), so

$$
\Delta \varphi_{0}=\pi / 2
$$

Sources are cery often identical

$$
\left(\Delta \varphi_{0}=0\right)
$$

(like the double slit experiment in Optics)

So. let's prepare expressions for these cases:

Pathlength difference for constructive interference

Assume that the sources are identical $\Delta \varphi_{0}=0$. Let's separate the sources with a pathlength Δx
$\Delta \varphi=\frac{2 \pi}{\lambda} \Delta x+\Delta \varphi_{0}$

Conditions for constructive interference:

$$
\Delta \varphi=2 m \pi
$$

$$
\frac{2 \pi}{\lambda} \Delta x=2 m \pi
$$

$$
\Delta x=m \lambda
$$

Identical sources
$\Delta \phi_{0}=0 \quad$ Speake, 1 from speaker 2 passes by.

The two waves are in phase ($\Delta \phi=2 \pi \mathrm{rad})$ and interfere constructively.

Thus, for a constructive interference of two identical sources with $A=2 a$, we need to separate them by an integer number of wavelength

Pathlength difference for destructive interference

Assume that the sources are identical $\Delta \varphi_{0}=0$. Let's separate the sources with a pathlength Δx
$\Delta \varphi=\frac{2 \pi}{\lambda} \Delta x+\Delta \varphi_{0}^{0}$
Conditions for destructive interference:

$$
\begin{gathered}
\Delta \varphi=\left(m+\frac{1}{2}\right) 2 \pi \\
\frac{2 \pi}{\lambda} \Delta x=\left(m+\frac{1}{2}\right) 2 \pi
\end{gathered}
$$

$$
\Delta x=\left(m+\frac{1}{2}\right) \lambda
$$

Wave 1

Speaker 2

Identical sources
$\Delta \phi_{0}=0$

Thus, for a constructive interference of two identical sources with $A=0$, we need to separate them by an integer number of wavelength

Applications

Noise-cancelling headphones
It allows reducing unwanted sound by the addition of a second sound specifically designed to cancel the first (destructive interference).

ConcepTest 1D interference

Two loudspeakers emit waves with $\lambda=2 \mathrm{~m}$.

- What, if anything, can be done to cause constructive interference between the two waves?
A) Move speaker 1 forward by 0.5 m
B) Move speaker 1 forward by 1.0 m
C) Move speaker 1 forward by 2.0 m
D) Do nothing

```
The sources are out of phase, }\Delta\mp@subsup{\phi}{0}{}=\pi\textrm{rad}
```

We have to compensate the inherent phase difference with a pathlength difference

It has to be moved by $\Delta x=\lambda / 2$ to align crests

95.144 Danylov Lecture 22

Department of Physics and Applied Physics

A Circular or Spherical Wave

A linear (1D) wave can be written

$$
y(x, t)=a \sin \left(k x-\omega t+\varphi_{0}\right)
$$

A circular (2D) or spherical (3D) wave can be written
$D(r, t)=a \sin \left(k r-\omega t+\varphi_{0}\right)$
where r is the distance measured outward from the source.

Transition from 1D to 2D/3D interference

- The mathematical description of interference in two or three dimensions is very similar to that of one-dimensional interference.
- The conditions for constructive and destructive interference are:
one-dimensional
Constructive:

$$
\Delta \varphi=\frac{2 \pi}{\lambda} \Delta x+\Delta \varphi_{0}=2 m \pi
$$

Destructive:

$$
\Delta \varphi=\frac{2 \pi}{\lambda} \Delta x+\Delta \varphi_{0}=\left(m+\frac{1}{2}\right) 2 \pi
$$

two or three dimensions

Maximum constructive interference:

$$
\Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \not{\phi_{0}}=m \cdot 2 \pi
$$

Perfect destructive interference:

$$
\Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}^{0}=\left(m+\frac{1}{2}\right) \cdot 2 \pi
$$ where Δr is the path-length difference. $m=0,1,2, \ldots$

If the sources are identical ($\left.\Delta \varphi_{0}=0\right)$, the interference is

$$
\begin{array}{ll}
\text { Constructive if } \Delta r=m \lambda \\
\text { Destructive if } & \Delta r=\left(m+\frac{1}{2}\right) \lambda
\end{array}
$$

Example of 2D interference

- The figure shows two identical sources that are in phase.
- The path-length difference Δr determines whether the interference at a particular point is constructive or destructive.

Constructive if $\Delta r=m \lambda$
Destructive if $\quad \Delta r=\left(m+\frac{1}{2}\right) \lambda$

$$
\Delta r_{A}=r_{1}-r_{2}=\lambda
$$

- At A, $\Delta r_{\mathrm{A}}=\lambda$, so this is a point of constructive interference.

$$
\Delta r_{B}=r_{1}-r_{2}=\frac{1}{2} \lambda
$$

- At $\mathrm{B}, \Delta r_{\mathrm{B}}=\frac{1}{2} \lambda$, so this is a point of destructive interference.

ConcepTest 2D Interference

Two in-phase sources emit sound waves of equal wavelength and intensity. At the position of the dot,
A) The interference is constructive.
B) The interference is destructive
C) The interference is somewhere between constructive and destructive
D) There's not enough information to tell about the interference.

Constructive if $\Delta r=m \lambda$

Destructive if $\Delta r=\left(m+\frac{1}{2}\right) \lambda$

eXample 21.10 Two-dimensional interference between two loudspeakers

Two loudspeakers in a plane are 2.0 m apart and in phase with each other. Both emit 700 Hz sound waves into a room where the speed of sound is $341 \mathrm{~m} / \mathrm{s}$. A listener stands 5.0 m in front of the loudspeakers and 2.0 m to one side of the center. Is the interference at this point maximum constructive, perfect destructive, or in between? How will the situation differ if the loudspeakers are out of phase?
Two speakers are in phase $\left(\varphi_{01}=\varphi_{02}, \Delta \varphi_{0}=0\right)$

We med to find Δr and compere with λ. $r_{1}=\sqrt{(5.0 \mu)^{2}+(1.0 \mu)^{2}}=5.1 \mu$ $r_{2}=\sqrt{(5.0 \mu)^{2}+(3.0 \mu)^{2}}=5.83 \mu$

$\Delta r=r_{2}-r_{1}=5.83 \mu-5.1 \mu=0.73 \mu$
We know that $f_{1}=f_{2}=700 \mathrm{~Hz}$ (sources are identical)
$\lambda=\frac{v}{f}=\frac{340 \mathrm{~m} / \mathrm{s}}{700 \mathrm{~Hz}}=0.486 \mathrm{~m}$
$\frac{r}{\lambda}=\frac{0.73 \mu}{0.486 \mu}=1.5=\frac{3}{2}=\left(m^{11}+\frac{1}{2}\right)$
So, the conditions ore for destructive interference.

Department of Physics and Applied Physics

What you should read
 Chapter 21 (Finight)

Sections
>21.5
>21.6
> 21.7

Thauk you

See you an Friday

