Lecture 26

Chapter 23

Ray Optics

Spherical Mirrorsin

http://faculty.uml.edu/Andriy Danylov/Teaching/PhysicsII
Lecture Capture:
http://echo360.uml.edu/danylov201415/physics2spring.html

Images in flat mirrors are the same size as the object and are located behind the mirror.

Concave Mirrars

Like lenses, mirrors can form a variety of images. For example, dental mirrors may produce a magnified image, just as makeup mirrors

Conuex Mirrars

Security mirrors in shops, on the other hand, form images that are smaller than the object.

We will use the law of reflection to understand how mirrors form images, and we will find that mirror images are analogous to those formed by lenses.

Department of Physics and Applied Physics

Concave Spherical Mirrors

- The figure shows a concave mirror, a mirror in which the edges curve toward the light source.

The focal length f is related to the mirror's radius of curvature by:

$$
f=\frac{R}{2}
$$

It is very simple.
Compare with a complicated lens maker's eq-n

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

- Rays parallel to the optical axis reflect and pass through the focal point of the mirror.

Images with Concave Spherical Mirrors

There are three rays to find the image:

1. A ray parallel to the axis reflects through the focal point.
2. A ray through the focal point reflects parallel to the axis.
3. A ray striking the center of the mirror reflects at an equal angle on the opposite side of the axis.
For a spherical mirror with negligible thickness, the object and image distances are related by:

$$
\begin{array}{ll}
\text { Mirror equation } & \frac{1}{f}=\frac{1}{S}+\frac{1}{S^{\prime}} \\
\text { Magnification } & m=-\frac{S^{\prime}}{S}=-\frac{h^{\prime}}{h} \\
& f=\frac{R}{2}
\end{array}
$$

Sign convention for a concave mirror:

$$
f>0 ; S>0
$$

95.144 Danylov Lecture 26

Department of Physics and Applied Physics

The mirror sign conventions

\(\left.\begin{array}{|c|c|c|}\hline Focal length, f \& \begin{array}{c}f>0

for a concave mirror\end{array}\end{array}\right),\)| $\mathbf{f}<0$ |
| :---: |
| for a convex mirror |$|$

EXAMPLE 23.17 Analyzing a concave mirror
A 3.0-cm-high object is located 20 cm from a concave mirror. The mirror's radius of curvature is $\mathbf{8 0} \mathbf{~ c m}$. Determine the position, orientation, and height of the image.

95.144 Danylov Lecture 26

Department of Physics and Applied Physics

95.144 Danylov Lecture 26

Department of Physics and Applied Physics

Convex Spherical Mirror

- The figure shows parallel light rays approaching a mirror in which the edges curve away from the light source.
- This is called a convex mirror.
- The reflected rays appear to come from a point behind the mirror.

The focal length f is related to the mirror's radius of curvature by:

$$
f=\frac{R}{2}
$$

This is the focal
point. Rays
appear to diverge
from this point.

Images Formed by a Convex Mirror

Convex Mirror Applications

Convex mirror are used for a variety of safety and monitoring applications, such as:

1) rearview mirrors

When an object is reflected in a convex mirror, the image appears smaller and you may think that it is farther away from you.

That is why there is a warning sign:

2) The round mirrors used in stores to keep an eye on the customers

ConcepTest Type of a Mirror

- What type of mirror is shown in the photo where a guy stands right next to the mirror?

8. Cancave Wirrar

C. Comuex Mirrar

Since he stands right next to the mirror, it means that $S<\boldsymbol{f}$. Let's consider both cases:

The image is upright and larger than the object. It is only possible with a concave mirror

$$
\begin{gathered}
\text { es: }
\end{gathered}
$$

ConcepTest Cat in a spoon

- A cat looks at his reflection in the bowl of spoon. The cat stands at some large distance from the spoon.
Is his image created by:

Since he stands far from the spoon, it means that $\boldsymbol{S}>\boldsymbol{f}$ (usually $\mathrm{f}=\mathrm{R} / 2$ of the spoon is small). Let's consider both cases:

The image is upright.

It is only possible with a convex surface of the spoon

Image in a spoon

Concave Mirrar

95.144 Danylov Lecture 26

Department of Physics and Applied Physics

Telescopes

Astronomical telescopes need to gather as much light as possible, meaning that the objective must be as large as possible. Hence, mirrors are used instead of lenses, as they can be made much larger and with more precision.

Lenses-vs-mirrors

In my imaging experiment I only used mirrors (spherical, parabolic (OAP)). Why did I prefer mirrors to lenses?
Lenses work with transmitted light and, as a result, light can be absorbed.
Which means we might have significant amount of laser power loss.
But mirrors work with reflected light and losses are much smaller.

What you should read Chapter 23 (FKnight)

Sections

>23.7 skip it
>23.8

Thank you
 See you an Tuesday

