Lecture 6

Chapter 4

Rotational Motion

Course website:
http://faculty.uml.edu/Andriy_Danylov/Teaching/PhysicsI
Today we are going to discuss:

Chapter 4:

- Uniform Circular Motion: Section 4.4
- Nonuniform Circular Motion: Section 4.6
In addition to translation, objects can rotate.

There is rotation everywhere you look in the universe, from the nuclei of atoms to spiral galaxies.

Need to develop a vocabulary for describing rotational motion.
In order to describe rotation, we need to define

How to measure angles?

You know degrees, but in the scientific world **RADIANS** are more popular. Let’s introduce them.
Angular Position in polar coordinates

Consider a pure rotational motion: an object moves around a fixed axis.

Instead of using \(x \) and \(y \) cartesian coordinates, we will define object’s position with: \(r, \theta \)

\[
\theta = \frac{s}{r} \quad \theta \text{ in radians!}
\]

Its definition as a ratio of two length makes it a pure number without dimensions. So, the radian is dimensionless and there is no need to mention it in calculations.

(Thus the unit of angle (radians) is really just a name to remind us that we are dealing with an angle).

If angle is given in radians, we can get an arclength spanning angle \(\theta \)

\[
S = r \theta
\]

Use Radians to get an arc length

\[
\text{CORRECT} \quad S = \frac{\pi}{3} r
\]

\[
\text{INCORRECT} \quad s = 60^\circ r
\]
Examples: angles in radians

\[s = \text{arc length} = \frac{2\pi r}{4} = \frac{\pi r}{2} \]

Apply

\[\theta = \frac{s}{r} = \frac{\pi r}{2} \]

\[\theta = \frac{\pi}{2} \text{ radians!} \]

\[s = 2\pi r \]

\[\theta = \frac{s}{r} = \frac{2\pi r}{r} = 2\pi \text{ rad} \]

\[360^\circ = 2\pi \text{ rad} \]

\[1 \text{ rad} = \frac{360}{2\pi} \approx 57.3^\circ \]
Now we need to introduce rotational kinematic quantities like we did for translational motion.

Angular displacement, Angular velocity, Angular acceleration for rotational kinematic equations
Angular displacement and velocity

Angular displacement:
\[\Delta \theta = \theta_2 - \theta_1 \]

The average angular velocity is defined as the total angular displacement divided by time:
\[\bar{\omega} = \frac{\Delta \theta}{\Delta t} \]

The instantaneous angular velocity:
\[\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt} \]

Angular velocity is the rate at which particle’s angular position is changing.

\[\text{rad}; \text{deg}; \text{rev}; \text{rev/min} = \text{rpm} \]

For both points, \(\Delta \theta \) and \(\Delta t \) are the same so
\(\omega \) is the same for all points of a rotating object.

That is why we can say that Earth’s angular velocity is \(7.2 \times 10^{-5} \text{ rad/sec} \) without connecting to any point on the Earth. All points have the same \(\omega \).

So \(\omega \) is like an intrinsic property of a solid rotating object.
Sign of Angular Velocity

When is the Angular velocity positive/negative?

\(\omega \) is positive for a counterclockwise rotation.

\(\omega \) is negative for a clockwise rotation.

As shown in the figure, \(\omega \) can be positive or negative, and this follows from our definition of \(\theta \).

(Definition of \(\theta \): An angle \(\theta \) is measured (convention) from the positive x-axis in a counterclockwise direction.)

Example:

\(\omega \) is negative for a clockwise rotation.

For a clock hand, the angular velocity is negative

\[\omega < 0 \]
The angular velocity ω of any point on a solid object rotating about a fixed axis is the same. Both Bonnie and Klyde go around one revolution (2π radians) every 2 sec.

ConcepTest

Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. The merry-go-round makes one complete revolution every 2 seconds.

Klyde’s angular velocity is:

- A) same as Bonnie’s
- B) twice Bonnie’s
- C) half of Bonnie’s
- D) one-quarter of Bonnie’s
- E) four times Bonnie’s

ω is the same for both rabbits

\[
\omega = \frac{\Delta \theta}{\Delta t} = \frac{1\text{ rev}}{2\text{ sec}} = \frac{2\pi \text{ rad}}{2\text{ sec}} = \pi \text{ rad/sec}
\]
Now, if a rotation is not uniform (angular velocity is not constant), we can introduce angular acceleration

\[\omega \neq \text{const} \]

Angular acceleration

The angular velocity is changing.
Angular Acceleration

The angular acceleration is the rate at which the angular velocity changes with time:

\[\omega_2 - \omega_1 = \Delta \omega = \frac{\omega_2 - \omega_1}{t_2 - t_1} \]

Average angular acceleration:

\[\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} \]

The units of angular acceleration are rad/s²

Since \(\omega \) is the same for all points of a rotating object, angular acceleration also will be the same for all points.

Thus, \(\omega \) and \(\alpha \) are properties of a rotating object.
The Sign of Angular Acceleration, α

Speeding up ccw
- Initial $\omega > 0$
- Final $\omega > 0$
- $\alpha > 0$
- $\omega_f - \omega_i > 0$
 \[\alpha = \frac{\omega_f - \omega_i}{t_f - t_i} > 0 \]
- Positive and larger

Slowing down ccw
- Initial $\omega > 0$
- Final $\omega < 0$
- $\alpha < 0$
- $\omega_f - \omega_i < 0$
 \[\alpha = \frac{\omega_f - \omega_i}{t_f - t_i} < 0 \]
- Positive and smaller

Speeding up cw
- Initial $\omega < 0$
- Final $\omega > 0$
- $\alpha > 0$
- $\omega_f - \omega_i > 0$
 \[\alpha = \frac{\omega_f - \omega_i}{t_f - t_i} > 0 \]
- Positive and larger

Slowing down cw
- Initial $\omega < 0$
- Final $\omega > 0$
- $\alpha < 0$
- $\omega_f - \omega_i < 0$
 \[\alpha = \frac{\omega_f - \omega_i}{t_f - t_i} < 0 \]
- Positive and smaller

So, α is positive if $|\omega|$ is increasing and is counter-clockwise.

a is negative if $|\omega|$ is decreasing and ω is clockwise.
The fan blade is slowing down. What are the signs of ω and α?

A) ω is positive and α is positive.
B) ω is positive and α is negative.
C) ω is negative and α is positive.
D) ω is negative and α is negative.
E) ω is positive and α is zero.

1) ω is negative (rotation CW)
2) ω is slowing down ($|\omega_f| < |\omega_i|$)

For example

\[\alpha = \frac{-2 - (-5)}{3 - 2} = +3 \text{ rad/s}^2 \]

Case 3 (the previous slide)
Now, since we have introduced all angular quantities, we can write down

Rotational Kinematic Equations

For motion with constant angular acceleration

\[\alpha = \text{const} \]
Rotational kinematic equations

The equations of motion for translational and rotational motion (for constant acceleration) are identical.

Applies to particles with circular trajectories and to rotating solid objects.

Translational kinematic equations
\(\alpha = \text{const} \)

1. \(v = v_o + at \)
2. \(x = x_o + v_o t + \frac{1}{2} at^2 \)
3. \(v^2 = v_o^2 + 2\alpha(x - x_o) \)

Rotational kinematic equations
\(\alpha = \text{const} \)

1. \(v \rightarrow \omega \quad \omega = \omega_o + \alpha t \)
2. \(x \rightarrow \theta \quad \theta = \theta_o + \omega_o t + \frac{1}{2} \alpha t^2 \)
3. \(a \rightarrow \alpha \quad \omega^2 = \omega_o^2 + 2\alpha(\theta - \theta_o) \)

\(\omega \) is the slope of \(\theta \)
\(\alpha \) is the slope of \(\omega \)
For a rotating object we can also introduce a linear velocity which is called the **Tangential velocity**

Now we need to introduce a useful expression relating **linear velocity and angular velocity**
Relation between tangential and angular velocities

Each point on a rotating rigid body has \textbf{the same angular} displacement, velocity, and acceleration!

The corresponding \textit{linear (or tangential) variables depend on the radius} and the linear velocity is greater for points farther from the axis.

\[v_t = r \omega \]

By definition, linear velocity:

In the 1st slide, we defined:

\[v_t = \frac{ds}{dt} = \left\| \frac{d\theta}{dt} \right\| = r \frac{d\theta}{dt} = \left\| \omega \right\| = r\omega \]

Remember it!!!!
You will use it often!!!

Relation between linear and angular velocities (\textbf{\(\omega \) in rad/sec})
ConcepTest
Bonnie and Klyde II

Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. The merry-go-round makes one revolution every 2 seconds. **Who has the larger linear (tangential) velocity?**

A) Klyde
B) Bonnie
C) both the same
D) linear velocity is zero for both of them

We already know that all points of a rotating body have the same angular velocity ω.

But their linear speeds v will be different because $v_t = r\omega$ and Bonnie is located farther out (larger radius R) than Klyde. $V_{Klyde} = \frac{1}{2}V_{Bonnie}$
For a rotating object we can also introduce the **Acceleration**

Tangential acceleration

Centripetal acceleration

Now we need to introduce a useful expression relating *linear acceleration and angular acceleration*.

\[a = r \alpha \]
Tangential acceleration

The particle in the figure is moving along a circle and is speeding up.

(Definition) **Tangential acceleration** is the rate at which the tangential velocity changes, \(a_t = \frac{dv_t}{dt} \).

\[
a_t = \frac{dv_t}{dt} = ||v_t|| = r \omega = r \frac{d\omega}{dt} = r \alpha
\]

There is a tangential acceleration \(a_t \) which is always tangent to the circle.

There is also the **centripetal acceleration** is \(a_r = \frac{v_t^2}{r} \), where \(v_t \) is the tangential speed.

Finally, any object that is undergoing circular motion experiences two accelerations: centripetal and tangential.

Let’s get a total acceleration:

\[
\vec{a}_{total} = \vec{a}_t + \vec{a}_r \quad a_{total} = \sqrt{a_t^2 + a_r^2}
\]
Centripetal acceleration

- In uniform circular motion ($\omega=\text{const}$), although the speed is constant, there is an acceleration because the direction of the velocity vector is always changing.
- The acceleration of uniform circular motion is called centripetal acceleration.
- The direction of the centripetal acceleration is toward the center of the circle.
- The magnitude of the centripetal acceleration is constant for uniform circular motion:

$$a_r = \frac{v_t^2}{r} \quad (\text{toward center of circle})$$

Centripetal acceleration can be rewritten in term of angular velocity, ω

$$a_r = \frac{v_t^2}{r} = \omega^2 r \quad v_{\tan} = r \omega$$
A car is traveling around a curve at a steady 45 mph. Is the car accelerating?

A) Yes
B) No

There is a Centripetal acceleration
A car is traveling around a curve at a steady 45 mph. Which vector shows the direction of the car’s acceleration?

There is a **Centripetal acceleration** pointing toward the center.
A car is slowing down as it drives over a circular hill.

Which of these is the acceleration vector at the highest point?

- **A.** Acceleration (slowing down) of changing speed
- **B.** Acceleration of changing direction
- **C.** Acceleration (slowing down) of changing direction
- **D.** Acceleration of changing speed
- **E.** Acceleration of changing speed
Uniform circular motion

A particle moves with uniform circular motion if its angular velocity is constant.

The time interval to complete one revolution is called the period, T.

The period T is related to the speed v:

\[v = \frac{1 \text{ circumference}}{1 \text{ period}} = \frac{2\pi r}{T} \]

In this case, as the particle goes around a circle one time, its angular displacement is \(\Delta \theta = 2\pi \) during one period \(\Delta t = T \). Then, the angular velocity is related to the period of the motion:

\[\omega = \frac{d\theta}{dt} = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T} \]

\[|\omega| = \frac{2\pi \text{ rad}}{T} \quad \text{or} \quad T = \frac{2\pi \text{ rad}}{|\omega|} \]
Thank you
See you on Wednesday

Bye Bye For Now