1. (10 points)
A simple pendulum of mass m and length l suspended from the ceiling of an elevator is accelerating upward with acceleration a. Find the frequency of small oscillations. (Derive the equation of motion from scratch using Newton’s 2$^{\text{nd}}$ law)

![Diagram of a pendulum](image)

2. (10 points)
An inextensible massless string of length l passes through a hole in a frictionless table. A point mass m_1 at one end moves on the table and a point mass m_2 hangs from the other end. Assume that m_2 moves in a vertical line only.

![Diagram of a string and masses](image)

a) Write the Lagrangian of the system.
b) Find the equations of motion.
c) Under what condition will the hanging mass m_2 remain stationary (m_1 undergoes circular motion)?
d) Assume that the hanging mass is pulled down slightly from the stationary position and released. What is the frequency of small oscillations about the circular motion?

3. (10 points)
Assume that the speed of light in media is proportional to the height. Show that light moves in circular arcs in this media. Assume that Fermat’s principle of least time works.