\qquad
\qquad

Instructions: Calculators and note sheets are not allowed. All answers must be supported by work on your exam sheets. Answers with little or no supporting work will receive little or no credit. Work must be neat, organized and easily interpreted. Graders will deduct points if your work is not expressed in complete mathematical sentences (e.g., $f^{\prime}(x)=$ something). Please box in your final answers. Your name and section number must be printed on ALL sheets.

MEMORY QUESTIONS (4 points each):
M.1. Expand and simplify (replace all trigonometric functions of standard angles with their values):

$$
\sin (\theta+\pi / 3)=
$$

M.2. A triangle has sides A, B, and C with opposite angles a, b, and c. Express the ratio $\frac{\sin (a)}{A}$ in terms of the remaining variables.

$$
\frac{\sin (a)}{A}=
$$

M.3. A cylinder of radius r and height h is topped with a hemi-sphere having the same radius. Its volume is given by:

$$
V(r, h)=
$$

\qquad Section \# \qquad

ANALYTIC QUESTIONS:

1. (15 points) Determine the derivative of $f(x)=\frac{1}{2 x-1}$ using the limit of the difference quotient. (Optional but advised: You should check your final answer using the rules of differentiation.)
\qquad Section \# \qquad
2. Find the derivative of the following functions using the rules of differentiation. NOTE: YOU DO NOT NEED TO SIMPLIFY. (Each problem is worth 6 points)
a. $h(x)=2 x^{2 / 5}-3 x^{-3}+5 \sqrt[3]{x}+3$
$h^{\prime}(x)=$
b. $s(x)=\frac{4 x^{2}+3 x-1}{\sqrt{x}}$
$s^{\prime}(x)=$
c. $f(t)=3 e^{-t} \sec (t)$
$f^{\prime}(t)=$
\qquad Section \# \qquad
3. Find the derivative of the following functions using the rules of differentiation. NOTE: YOU DO NOT NEED TO SIMPLIFY. (Each problem is worth 7 points)
a. $g(x)=\frac{2 \tan (x)}{x^{3}-\cos (x)}$
$g^{\prime}(x)=$
b. $\quad r(\theta)=2 \cos (\sin (\sqrt{\theta-3}))$
$r^{\prime}(\theta)=$
\qquad
4. (15 Points) A particle's position as a function of time for $t \geq 0$ is given by $g(t)=t+\sin (2 t)$. Find an equation for the particle's velocity, $v(t)$, and its acceleration, $a(t)$. What is the first value of t for which $v(t)=0$?
\qquad Section \# \qquad
5. (7 points) Find the equation of the line (in slope-intercept form) that is tangent to $y=3 \sqrt{x}+\frac{1}{x}$ at $x=1$.
6. (7 points) Find the values of t where $f(t)=3 t^{4}+8 t^{3}-18 t^{2}+11$ has a horizontal tangent.
\qquad Section \# \qquad
7. (12 points) The trajectory of a particle in the $x-y$ plane is described by the parametric equations $x(t)=\sin (\pi t)$ and $y(t)=e^{2 t}+e^{t}$. Determine $\frac{d y}{d x}$ as a function of t . What is the slope of the line tangent to the particle's trajectory at $t=0$? (Note: You do NOT need to find the equation of the tangent line.)

BONUS: (10 Points) Determine the exact value of the second derivative of $f(x)=e^{x} \sin (x)$ at $x=\pi$.

