Summary of the Basic Rules of Algebraic Manipulation
Commutative properties (re-arrangement)
Addition: $\quad a+b+c=a+c+b=b+a+c=c+b+a \quad$ etc.
Multiplication: $\quad a b c=b a c=c b a=b c a=a c b$ etc.
Associative properties (order of computation)
Addition: $\quad(a+b)+c=a+(b+c) \quad$ Multiplication: $\quad(a b) c=a(b c)$

Distributive properties

$a(b+c+d)=a b+a c+a d \quad$ and/or $\quad(a+b+c) d=a d+b d+c d$
Pulling out common factors: $x \Delta+x \Phi+x \Gamma+x \Theta=x(\Delta+\Phi+\Gamma+\Theta)$
Binomial mult: $(a+b)(c+d)=a(c+d)+b(c+d)=a c+a d+b c+b d$
Multinomial mult: $(a+b+c)(d+e+f)=a d+a e+a f+b d+b e+b f+c d+c e+c f$
Identity properties and Additive inverse property
$a=a \cdot 1=1 \cdot a=a / 1=a \pm 0=a, 1=\frac{\Omega}{\Omega}$ for $\Omega \neq 0 \quad$ and $\Theta+(-\Theta)=0$
Treat leading "-" sign as multiplication by (-1)

$$
\begin{array}{lll}
-a=(-1) a & -a b c=(-1) a b c=(-a) b c=a(-b) c=a b(-c) & (-a)(-b)=(-1)(-1) a b=a b \\
-(-a)=(-1)(-1) a=a & -(\Delta+\Theta)=(-1)(\Delta+\Theta)=(-1) \Delta+(-1) \Theta=-\Delta-\Theta
\end{array}
$$

Properties of equality
Add same to both sides: If $a=b$ then $a+\Theta=b+\Theta$
Multiply both sides by same: If $a=b$ then $a \Theta=b \Theta$ (avoid using if $\Theta=0$)
Dividing both sides by same: If $a \Theta=b \Theta$ and $\Theta \neq 0$ then $a=b$

Operations with fractions

Equivalent fractions: $\frac{a b}{c}=a \frac{b}{c}=\frac{b}{c} a=b \frac{a}{c}=\frac{a}{c} b=a b \frac{1}{c} \quad \frac{-a}{b}=-\frac{a}{b}=\frac{a}{-b}=(-1) \frac{a}{b}$
Addition/subtraction: $\frac{a}{\Theta} \pm \frac{b}{\Theta}=\frac{a \pm b}{\Theta}$ (same denom) $\frac{a}{\Theta} \pm \frac{b}{\Delta}=\frac{a \Delta \pm b \Theta}{\Theta \Delta}$ (diff denom)
Multiplication: $\frac{x}{y} \cdot \frac{\Lambda}{\Theta}=\frac{x \Lambda}{y \Theta}$
Division: $\frac{(x / y)}{(\Lambda / \Theta)}=\left(\frac{x}{y}\right) \cdot\left(\frac{\Theta}{\Lambda}\right)=\frac{x \Theta}{y \Lambda}$ ("flip and multiply") $\frac{(x / y)}{\Theta}=\frac{x / y}{\Theta / 1}=\frac{x}{y} \frac{1}{\Theta}=\frac{x}{y \Theta}$
Cross multiplying: If $\frac{a}{b}=\frac{\Lambda}{\Theta}$ then $\frac{a}{b} b \Theta=\frac{\Lambda}{\Theta} b \Theta$ yielding $a \Theta=\Lambda b$
Key identities: $(x-y)(x+y)=x^{2}-y^{2} \quad a^{3} \pm b^{3}=(a \pm b)\left(a^{2} \mp a b+b^{2}\right)$

$$
(p \pm q)=p^{2} \pm 2 p q+q^{2} \quad \sqrt{x^{2}}=|x|
$$

Absolute values: $|x|=a \Rightarrow x= \pm a \quad|x| \geq a \Rightarrow x \geq a$ or $x \leq-a \quad|x| \leq a \Rightarrow-a \leq x \leq a$
Distance form: $|x-c|<d$ can be interpreted as "The distance between x and c is less than d."

