
Finding the Derivative of the Inverse of a Function 
Whose Derivative is Known 

 
We have developed derivatives for numerous functions such as the six primary 
trigonometric functions and the exponential function. Each of these functions has a 
corresponding inverse function and we need a procedure for differentiating them.  
 

We will develop a generic procedure for producing the desired derivatives and then 
apply it to several trigonometric functions and the exponential functions. 
 
Assume the inverse of the function ( )f x   is denoted by 1( )y f x−=  and the derivative of 

( )f x  is known and denoted by ( )f x′ .  We seek to find the derivative of 1( )f x− , or dy
dx

.  
 

Starting with 1( )y f x−=  and applying ( )f x  to both sides yields 
 

1( ) ( ( ))f y f f x− x= =            (1) 
 

based on the properties of inverses. Differentiating Eq. 1 using implicit differentiation 
yields 
 

( ) 1dyf y
dx

′ =     and, therefore,      
1
( )

dy
dx f y

=
′ . 

 

Substituting 1( )f x−  for y  yields 
 

1

1
( ( )

dy
dx )f f x−=

′ .   (2) 
 

To the uninitiated, this looks like just a jumble of symbols, so let’s apply it to an actual 
function. There are two ways to do this. First, we can mimic the process carried out 
above or, second, we can just apply the formula. Let’s do both for the function sin( )x . 
 

Let 1sin ( )y x−= . This implies that 1sin( ) sin(sin ( ))y x− x= = . Differentiating both sides using 
implicit differentiation yields  
 

cos( ) 1dyy
dx

=      and       1

1 1
cos( ) cos(sin ( ))

dy
dx y x−= =   (3) 

 

How do we make sense of 1cos(sin ( ))x− ? What we want is the cosine of an angle whose 
sine is x. So, let’s draw a right triangle with an angle whose sine is x and then 
determine the cosine of that angle.   
 

Figure 1 illustrates an angle θ  whose sine is x . Using the Pythagorean Theorem, we 
can fill in the missing side of the triangle and determine that the cosine of θ  is  



 
2cos( ) 1 xθ = − .  Therefore 1 2cos(sin ( )) 1x x− = −  and 

we now know that the derivative of  1sin ( )x−  is 
 

1
1 2

1 1sin ( )
cos(sin ( )) 1

d x
dx x x

−
−= =

−
 (4) 

 

If we look at the middle term in Eq. 4 we can see the 
elements of Eq. 2. Specifically the  replaces 

 (since cos is the derivative of sin) and the 
argument of  is  

"cos(_)"
(__)f ′

(__)f ′ 1sin ( )x−  since that is the inverse 
function, 1( )f x− , we are dealing with. 
 

Let’s try this with tan( )x . First, we need the derivative of tan( )x  which is 2sec ( )x . 
Therefore, using Eq. 2 we can write the derivative of arctan(x) as follows: 
 

1
2 1

1tan ( )
sec (tan ( ))

d x
dx x

−
−= .  

 

Drawing a triangle appropriate to 1tan ( )xθ −=  (Figure 
2) and then filling in the missing side, this time the 
hypotenuse, yields an expression for 

1 2 +sec( ) sec(tan ( )) 1x xθ −= = . Squaring this 
expression and placing it in the denominator yields 
 

1
2 1 2

1tan ( )
sec (tan ( )) 1

d x
dx x x

−
−= =

+
1

.         (5) 
 

The same process works for the other four trigonometric functions. Let’s try it for the 
inverse of the exponential function, xe , namely, ln( )y x= . 
 

Exponentiating both sides we get ln( )y xe e x= = . Differentiating this expression with 
respect to x using implicit differentiation yields 1y dye

dx
=  and solving this expression  

for dy
dx

 leads to 1
y

dy
dx e

= .  

But  so we can conclude that       ye = x
1ln( )dy d x

dx dx x
= =   (6) 

 

The derivative of log ( )a x  can then be derived from Eq. 6 using the change of base 

formula, namely ln( )log ( )a x = ln( )
x

a  yielding  
1 1log ( ) ln( )

ln( ) ln( )a
d dx x
dx a dx a x

= =    (7) 


