
Fundamentals of Electricity Fall 2016

Assignment #7

You have to provide the <u>detailed solution</u> for each problem **AND** fill the <u>answer table</u> on last page

Problem 1:

A 20 cm long conductor is moving upward between the poles of a magnet as shown in the following Figure. The pole faces are 8.5 cm² on each side and the flux is 1.24 mWb. The motion produces an induced voltage across the conductor of 44 mV. What is the speed of the conductor?

When a conductor is moved in a magnetic field, the induced voltage is given by the formula,

$$v_{ind} = B_{\perp}hv$$

Where.

 B_{\perp} is the magnetic flux density that is perpendicular to the moving conductor in teslas, and ν is the velocity or speed of the conductor in m/s.

The flux density is given by,

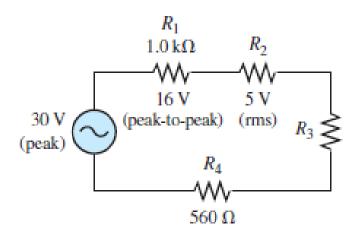
$$B_{\perp} = \frac{\phi}{A}$$
=\frac{1.24 \times 10^{-3} \text{ Wb}}{\left(8.5 \times 10^{-2} \text{ m}^2 \right)^2}
= 0.172 \text{ Wb/m}^2 \text{ or tesl a}

Although the conductor is 20 cm long, only 8.5 cm is in the magnetic field. Thus the value of l = 8.5 cm.

By substituting the known values in the induced voltage formula, we obtain the following:

$$(44 \times 10^{-3} \text{ V}) = (0.172)(8.5 \times 10^{-2} \text{ m})v$$

$$v = \frac{44 \times 10^{-3} \text{ V}}{(0.172)(8.5 \times 10^{-2} \text{ m})}$$


v = 3.01 m/s

Thus the speed of the conductor is,

$$v = 3.01 \,\text{m/s}$$

Problem 2:

Determine the rms voltage across R3 in the following figure.

We can find the rms current going through the loop by finding the curr one of the resistors since it is a series circuit. So by applying Ohm's L:

$$I = \frac{V_1}{R_1}$$

$$= \frac{5.66 \text{ V}}{1.0 \text{ k}\Omega}$$

$$I = 5.66 \text{ mA}$$

Again by applying Ohm's Law on R_4 , we get

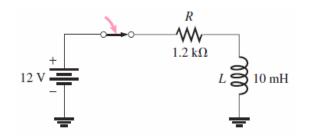
$$V_4 = IR_4$$

= (5.66 mA)(560 Ω)
 $V_4 = 3.17 \text{ V}$

By applying Kirchhoff's voltage law to the above circuit, we get

$$V_3 = V_s - V_1 - V_2 - V_4$$

= 21.21 V - 5.66 V - 5 V - 3.17 V


$$V_3 = 7.38 \text{ V}$$

Therefore rms voltage across R3 is given by

$$V_3 = 7.38 \text{ V}$$

Problem 3:

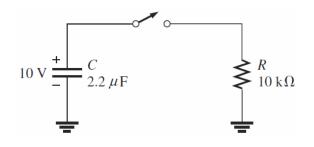
From this figure and given the following general formula $i=I_F+(I_i-I_F)e^{-\frac{t}{\tau}}$, define I_i , I_F , τ , and i at 20 μ s.

$$I_1 = OA \quad (T=0s)$$
 $I_F = \frac{V_S}{R} \quad (T=\infty) \rightarrow \text{ the inductions is considered}$

as a conducting wire, no resistance

 $I_F = \frac{12}{1,210^3} = 0,01 = 10 \text{ m/s}.$

$$i(H) = I_{F} + (O - I_{F})e^{-\frac{1}{2}}$$


$$i(H) = I_{F} - I_{F}e^{-\frac{1}{2}} = I_{F}(1 - e^{-\frac{1}{2}})$$
with $a = \frac{L}{R} = \frac{10.10^{-3}}{1.2.10^{3}} = 8,310^{-6} \text{ s.} = 8,3 \text{ ps}$

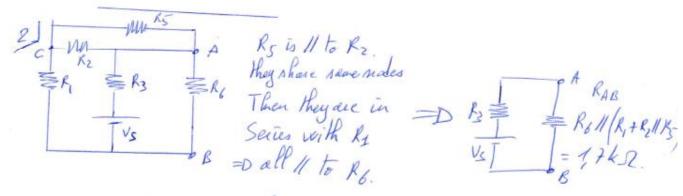
at
$$t = 20 \mu s$$

 $i(20\mu s) = 0,01(1-e^{-\frac{20}{8,3}}) = 0,09 = 9mA$

We have an increase of carent over time with a maximum of I_F . $i(20 \mu s) < I_F$ is correct.

Problem 4:

From this figure and given the following general formula $v = V_F + (V_i - V_F)e^{-\frac{t}{\tau}}$, define V_i , V_F , τ , and v at 45 ms.


$$V_{I} = 10V$$
 (t=0s)
 $V_{F} = 0V$ (t=0s) -> the copacilor is completly discharged.
 $C = RC = 10.10^{3} \times 2.2 \cdot 10^{-6} = 22.10^{-3} \text{ s} = 22 \text{ ms}$.
 $V(t) = 0 + (V_{I} - 0)e^{-\frac{1}{2}z}$
 $= V_{I}e^{-\frac{1}{2}z}$
 $= V_{I}e^{-\frac{1}{2}z}$
 $v(45 \text{ ms}) = 10 e^{-\frac{45}{22}} = 13 \text{ V}$
We have a discharge of the voltage from the capacitor.
With ovat ∞ . $v(45 \text{ ms}) < V_{I}$ is correct.

Problem 5:

Using Thevenin's theorem, find the voltage across R4

- 3 Find the Thevenim Resistance
- 4. Find V4.

RTH can be found when we short circuiting
$$V_s$$
 $R_1 = R_6 \parallel R_3 \parallel \left[R_1 + R_2 \parallel R_5 \right]$
 $R_1 = R_6 \parallel R_3 \parallel \left[R_1 + R_2 \parallel R_5 \right]$
 $R_2 = R_6$
 $R_3 = R_6$
 $R_4 = R_6 \parallel R_3 \parallel \left[R_1 + R_2 \parallel R_5 \right]$
 $R_7 = R_7 = R_7$

ANSWERS

Problem 1	Speed	3.01 m/s
Problem 2	V_{rms}	7.38 V
Problem 3	I_i = I_F = τ = $i(20\mu s)$ =	0 A 10 mA 8.3 μs 9 mA
Problem 4	$V_i = V_F = V_F = V(45ms) = V(45ms) = V(45ms)$	10 V 0 V 22 ms 1.3 V
Problem 5	V4 =	11.7 or 11.8 V