STABILIZED FINITE ELEMENT MODELING OF PLASMA FLOW INSTABILITIES

Juan Pablo Trelles, Emil Pfender, and Joachim V. R. Heberlein

Department of Mechanical Engineering, University of Minnesota

This research has been partially supported by the National Science Foundation and the U of M Supercomputing Institute
Outline

1. Introduction & Background (why it is important)
2. Mathematical Model (what we know)
3. Numerical Model (how to deal with it - 1)
4. Solution Approach (how to deal with it - 2)
5. Preliminary Results (where we are)
6. Conclusions & Further Work (what’s next)
SciDAC needs methods for the solution of general multiphysics-multiscale problems

- Methods that rely as little as possible on deep analysis of equations

Promising: Stabilized and Multiscale Methods
Definition of Plasma

Plasmas:
- Partially or fully ionized gases
- Any gas mixture with charged species, i.e. $\text{Ar} + M \rightarrow \text{Ar}^+ + e^- + M$
- +99% of observable mass in the universe
- 4$^{\text{th}}$ state of matter: *solid → liquid → gas → plasma*

- Typically, span over a wide range of scales …

[Diagram showing the transition from solid to gas to plasma with temperature scale from cold to hot]
Plasmas: From natural phenomena ... to tech. applications

Motivation of this Research

• Thermal plasmas widely used for materials processing

• Applications show inconsistent results due to instabilities
 ➢ Characteristic process time in same order as instability
 ➢ Example: plasma spray coating

- Need better understanding of plasma dynamics -

Goal of this research: Develop a computational model capable of describing flow in plasma torches and predicting effects of design and operating parameter changes
Arc and Jet Dynamics

- arc length \propto voltage drop
- imbalance Drag-Magnetic forces
- arc movement \rightarrow jet forcing
- enhanced cold flow entrainment
Reattachment Process

1. attachment movement

2. new attachment appears

3. new attachment remains

experiments, simplified geometry

Stability

- Commonly related to potential energy curves:

 - stable
 - unstable
 - neutrally stable
 - metastable

- **Lyapunov**: if all points that start near x stay near x forever
 $\rightarrow x$ is Lyapunov stable

- **Are arc dynamics due to instability?**

```
+ stable
unstable
```

![Graph showing voltage (V) over time (ms)](image)
Plasma Flow Instabilities

- **Fluid:** shear instability \rightarrow uncond. unstable $T_1/T_2 > 1.52$ (> 10 in plasma!)

- **Magnetic:** kink and sausage instabilities (but too low B?)

- **Thermal:** cold flow interaction

- **Electrical:** not considered here (RLC characteristic of system)
Outline

1. Introduction & Background
2. Mathematical Model
3. Numerical Model
4. Solution Approach
5. Preliminary Results
6. Conclusions & Further Work
A Hierarchy of Plasma Models

- **Particle Models**
 - Molecular Dynamics (MD)
 - Monte Carlo (DSMC)
 - Particle-in-Cell (PIC)
 - ...

 - Particle or Fluid model best depending on problem
 - A single model may not be valid in the whole domain of interest

- **Fluid Models**
 - Boltzmann (time + 6D phase space)
 - Multi-fluid \((\rho_s, u_s, T_s\) for each species \(s\))
 - Chemical & thermal non-equilibrium (multiple species, temperatures)
 - Chemical & thermal equilibrium
 - Equilibrium & inviscid

 \[
 \frac{\partial f_s}{\partial t} + \bar{u} \cdot \nabla_x f + \bar{a} \cdot \nabla_u f = f_s^c
 \]

 simpler, less accurate

in this research
Mathematical Approach: LTE Model

- **Fluid** (conservation eqns.) + **Electromagnetic** (Maxwell’s eqns.) + Thermodynamic & Transport Properties
- System of Transient-Advective-Diffusive-Reactive eqns. for: \(p, \bar{u}, T, \phi, \bar{A} \)

<table>
<thead>
<tr>
<th>transient</th>
<th>advection</th>
<th>diffusion</th>
<th>reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial p}{\partial t})</td>
<td>(\nabla \cdot \rho \bar{u})</td>
<td>(\rho \bar{u} \cdot \nabla \bar{u} - \nabla p)</td>
<td>(- \nabla \cdot \mu \left(\nabla \bar{u} + \nabla \bar{u}^T - \frac{2}{3} \nabla \cdot \bar{u} \bar{\delta} \right))</td>
</tr>
<tr>
<td>(\rho \frac{\partial \bar{u}}{\partial t})</td>
<td>(\rho \bar{u} \cdot \nabla \bar{u} - \nabla p)</td>
<td>(\nabla \cdot (\kappa \nabla T) - \frac{k_B}{e} \bar{J}_q \cdot \nabla T)</td>
<td>(- \left(\bar{J}_q \cdot \bar{E} - Q_r - \frac{\partial \ln \rho}{\partial \ln T} - \frac{Dp}{Dt} \right))</td>
</tr>
<tr>
<td>(\rho C_p \frac{\partial T}{\partial t})</td>
<td>(\rho C_p \bar{u} \cdot \nabla T)</td>
<td>(\nabla \cdot (\kappa \nabla T) - \frac{k_B}{e} \bar{J}_q \cdot \nabla T)</td>
<td>(- \left(\bar{J}_q \cdot \bar{E} - Q_r - \frac{\partial \ln \rho}{\partial \ln T} - \frac{Dp}{Dt} \right))</td>
</tr>
<tr>
<td>(\mu_0 \sigma \frac{\partial \bar{A}}{\partial t})</td>
<td>(\mu_0 \sigma \left(\bar{u} \times \nabla \times \bar{A} - \nabla \phi \right))</td>
<td>(\nabla^2 \bar{A})</td>
<td>(- \nabla \cdot \sigma \left(\nabla \phi - \bar{u} \times \nabla \times \bar{A} \right))</td>
</tr>
</tbody>
</table>

Additional: \(\rho = \frac{p}{R_g T}, \quad \bar{B} = \nabla \times \bar{A}, \quad \bar{E} = -\nabla \phi - \frac{\partial \bar{A}}{\partial t}, \quad \bar{J}_q = \sigma (\bar{E} + \bar{u} \times \bar{B}), \quad \bar{E}' = \bar{E} + \bar{u} \times \bar{B} \)
Mathematical Approach: Non-Equilibrium Model

- Thermal and chemical non-equilibrium
- System of transient advection-diffusion-reaction equations (TADR):

\[
\begin{align*}
\text{transient} & + \quad \text{advection} & + \quad \text{diffusion} & - \quad \text{reaction} & = 0 \\
1. \text{Mass cons.} \quad & \frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{u} \rho) & & = 0 \\
2. \text{Species cons.} \quad & \frac{\partial \rho_s}{\partial t} + \nabla \cdot (\vec{u} \rho_s) + \nabla \cdot \vec{J}_s & - \quad \rho_s & = 0 \\
3. \text{Momentum} \quad & \frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\vec{u} \rho \vec{u}) + \nabla \cdot \vec{P} & - \quad \vec{J}_q \times \vec{B} & = 0 \\
4. \text{En. Elect.} \quad & \frac{\partial \rho_e e_e}{\partial t} + \nabla \cdot (\vec{u} \rho_e e_e) + \nabla \cdot \vec{q}' & - \quad \left(\vec{J}_q \cdot \vec{E}' - \dot{Q}_{eh} \vec{Q}_{eh,e} - \dot{Q}_r - P \nabla \cdot \vec{u} \right) & = 0 \\
5. \text{En. Heavy} \quad & \frac{\partial \rho_h e_h}{\partial t} + \nabla \cdot (\vec{u} \rho_h e_h) + \nabla \cdot \vec{q}_h & - \quad \left(\dot{Q}_{eh} - P \nabla \cdot \vec{u} \right) & = 0 \\
6. \text{Ampere's law} \quad & \nabla \times \vec{B} & - \quad \mu_0 \vec{J}_q & = 0 \\
7. \text{Current cons.} \quad & \nabla \cdot \vec{J}_q & = 0
\end{align*}
\]
Thermodynamic & Transport Properties

- Strongly non-linear properties:
 - function of composition (chemical non-equil.)
 - function of temperatures (thermal non-equil.)

>>> properties can vary by orders of magnitude! <<<
Dealing with Non-Linear Properties

- **Example:** Poisson eqn. (current conservation)
 \[\nabla \cdot (\sigma \nabla \phi) = 0 \quad \& \quad \sigma(T) \]

 >> Galerkin doesn’t work where
 \(\nabla T \) large (oscillations)

- **1st approach:** advection-diffusion eqn.
 - Treat \(\sigma \) as \(\sigma(X) \):
 \[\nabla \sigma \cdot \nabla \phi + \sigma \nabla^2 \phi = 0 \]
 - Needs adaptive refinement:
 \[h < \frac{\sigma}{|\nabla \sigma|} \quad - h \text{ extremely small} \]
 - Or stabilization (i.e. SUPG)
Dealing with Non-linear Properties (cont.)

2nd approach: two-var. advection-diffusion eqn.

- Treat σ as $\sigma(T)$:
 \[
 \left(\frac{\partial \sigma}{\partial T} \right) \nabla T \cdot \nabla \phi + \sigma \nabla^2 \phi = 0
 \]
- Need adaptive refinement or stabilization, but how?
- Recall: ∇T can be very large

3rd approach: multi-var. advection-diffusion eqn.

- σ is actually $\sigma(T, \rho_e, \ldots)$:
 \[
 \left(\frac{\partial \sigma}{\partial T} \right) \nabla T + \left(\frac{\partial \sigma}{\partial \rho_e} \right) \nabla \rho_e + \ldots \cdot \nabla \phi + \sigma \nabla^2 \phi = 0
 \]
- Adaptive refinement or stabilization??

Now, what if instead of Poisson:

\[
\nabla \cdot (\sigma \nabla \phi) + \nabla \cdot \sigma \left(\frac{\partial \vec{A}}{\partial t} - \vec{u} \times \nabla \times \vec{A} \right) = 0
\]

Adding more physics makes things harder!
Outline

1. Introduction & Background
2. Mathematical Model
3. Numerical Model
4. Solution Approach
5. Preliminary Results
6. Conclusions & Further Work
The TADR System

- System of **TADR** equations:

\[
A_0 \frac{\partial Y}{\partial t} + (A \cdot \nabla)Y - \nabla \cdot (K \nabla Y) - (S_1 Y + S_0) = 0
\]

- This is \sim \text{ arbitrary. In a code, we really need:}

\[
A_0, A, K, S_1, S_0 \quad \text{functions of} \quad t, X, Y, \nabla Y, \dot{Y},...
\]

- Many, many fluid flow problems can be treated as **TADR**, including:
 - Multi-fluid models \quad (3D)
 - Relativistic fluids \quad (4D)
 - Boltzmann equations \quad (6D)

- Yet, very few work on general **TADR** systems …
Finite Element Method

TADR equations:

\[
\frac{A_0}{\partial t} \partial Y(t) + (A \cdot \nabla) Y - \nabla \cdot (K \nabla Y) - (S_1 Y + S_0) = \nabla Y - S_0 = R(Y) = 0
\]

- **Galerkin FEM:**
 \[W = \text{weight function} = \text{basis function} = N(X)\]
 \[\Omega \quad \text{Spatial domain}\]
 \[\Gamma_1 \quad \text{Dirichlet boundary:} \quad Y = Y_{\text{fix}}\]
 \[\Gamma_2 \quad \text{Robin boundary:} \quad K \partial_n Y + q_0 + q_1 Y = 0\]

- **Integration by parts:**
 \[\int_{\Omega} N^T (A_0 \partial Y/\partial t + (A \cdot \nabla) Y - (S_1 Y + S_0)) + \int_{\Omega} \nabla N^T (K \nabla Y) + \int_{\Gamma_2} N^T (q_0 + q_1 Y) = 0\]

Problem: doesn't work incompatible and/or unresolved discretizations
 \[\rightarrow \text{doesn't work for multiphysics-multiscale problems}\]
Typical example:

“different characteristic sizes needed to describe different parts of the process”
A Canonical Multiscale Problem

Supersonic flow over a sphere – different length scales

mean flow \(l \sim O(L) \)

flow direction

boundary layer \(l \sim O(L/Re)^{1/2} \)

shocks \(l \sim O(\lambda) \)

turbulent wake \(l \sim O(L \text{ to } L/Re) \)

Tremendously difficult to model with today’s methods!

Recall:
\[
Re = \frac{\rho UL}{\mu}
\]

* M. Van Dyke, An Album of Fluid Motion, 1982
Variational Multiscale Methods

- Scale decomposition: $\mathbf{Y} = \mathbf{\bar{Y}} + \mathbf{Y}'$
- Related to stabilized methods (i.e. SUPG, GLS)

$$\text{total} = \int_{\Omega} \mathbf{W} \mathbf{R}(\mathbf{Y}) d\Omega + \int_{\Omega'} \mathbf{P}(\mathbf{W}) \mathbf{\tau R}(\mathbf{Y}) d\Omega' = 0$$

“A Framework for the Solution of General Multiphysics-Multiscale Problems”

\gg extra term $\to 0$ as mesh is refined (approach DNS)

\gg ~only alternative for modeling, i.e., turbulent reactive electromagnetic flows
Stabilized & Multiscale Finite Element Methods

- Generalization:
 \[P = \mathcal{L}_{\text{adv}} \text{SUPG} \]
 \[P = \mathcal{L} \text{ GLS} \]
 \[P = -\mathcal{L}^* \text{ VM} \rightarrow \text{ASGS} \]

- Problem becomes:

\[
\int_{\Omega} N^T \left(A_0 \frac{\partial Y}{\partial t} + (A \cdot \nabla)Y - S_1 Y - S_0 \right) + \int_{\Omega} \nabla N^T (K \nabla Y) + \int_{\Gamma_2} N^T (q_0 + q_1 Y) \]

Galerkin

\[
\int_{\Omega'} P(N)^T \boldsymbol{\tau}_{SGS} \mathcal{R}(Y) + \int_{\Omega'} \nabla N^T (K_{DC} \nabla Y) = 0
\]

sub-grid scale term

\[\text{discontinuity capturing} \]

>> Consistency: residual based, extra terms → 0 as mesh is refined

>> **Still need to define:** \[\boldsymbol{\tau}_{SGS} \& \ K_{DC} \]
Intrinsic Time Scales Matrix, τ^{SGS}

- **Formally:** $\tau = \frac{1}{\text{meas}(\Omega_e)} \int \int g'(x,y) dx dy$ (Hughes et al) How to find g'?

 \[1D \text{ adv-diff: } \tau = \frac{h}{|a|} \xi(Pe), \quad Pe = \frac{|a|h}{k} = \text{adv. diff.} \]

- **Empirically:** (\sim generalizations of 1D)

 \[\tau \approx h |A|^{-1} \xi(Pe, Co, Da, ...) \quad Pe = \frac{\text{adv. diff.}}{\text{diff.}}, \quad Co = \frac{\text{adv. trans.}}{\text{trans.}}, \quad Da = \frac{\text{adv. react.}}{\text{react.}} \]

 i.e. $\tau \approx \left(c_1 \left| \frac{A_0}{\Delta t} \right|^p + c_2 \left| \frac{A}{h} \right|^p + c_3 \left| \frac{K}{h^2} \right|^p + c_4 \left| \frac{S_1}{1} \right|^p \right)^{-\frac{1}{p}}$ (Shakib, Hauke, Tezduyar, Codina)

- **In this research:** (LTE) $\tau = \text{diag}(\tau_c, \tau_m, \tau_m, \tau_m, \tau_e, 0, 0, 0, 0)$
Discontinuity Capturing Diffusivity Matrix, K_{DC}

- Needed because formulation does not preserve monotonicity (or because τ is not well approximated?)

Hughes & Mallet, Hughes & Shakib, Tezduyar, …

$$K_{DC} = \left\{ v_{DC} A_0 g^{ij} \right\} \quad \text{with} \quad v_{DC} = 2 \frac{\mathcal{R}(Y) \cdot \tau \mathcal{R}(Y)}{g^{ij} Y_{,i} \cdot Y_{,j}} \quad \text{(scalar)}$$

$>>$ acts // to ∇Y, negligible if smooth solution ($\mathcal{R}(Y) \sim 0$)

$>>$ method non-linear even for linear problems

$>>$ **Problem** (?) : K_{DC} adds the same dissipation to all the variables

- **In this research:** (similar to Codina’s; only to variables that need it)

$$K_{DC}(y) = \frac{h_y}{2|\nabla y|} |\mathcal{R}(y)| \chi_y$$
Outline

1. Introduction & Background
2. Mathematical Model
3. Numerical Model
4. Solution Approach
5. Preliminary Results
6. Conclusions & Further Work
Discrete System

- **Newton Method**: \(\text{Res}(Y) \to 0 \implies \text{Jac} \Delta Y \approx -\text{Res}, \quad \text{Jac} = \partial \text{Res}/\partial Y \)

- **Residual vector**:

\[
\text{Res} = A_e \text{Res}_e
\]

\[
\text{Res}_e = \int_{\Omega_e} N^T \left(A_0 \frac{\partial Y}{\partial t} + (A \cdot \nabla) Y - S_1 Y - S_0 \right) + \int_{\Omega_e} \nabla N^T (K \nabla Y) + \int_{\Gamma_{2e}} N^T (q_0 + q_1 Y) + \int_{\Omega_e} \mathcal{P}(N)^T \boldsymbol{\tau}_{SGS} \mathcal{R}(Y) + \int_{\Omega_e} \nabla N^T (K_{DC} \nabla Y)
\]

- **Jacobian matrix**: (approx., frozen coeff.)

\[
\text{Jac} = A_e \text{Jac}_e
\]

\[
\text{Jac}_e = \int_{\Omega_e} N^T ((A \cdot \nabla) - S_1) N + \int_{\Omega_e} \nabla N^T (K \nabla N) + \int_{\Gamma_{2e}} N^T (q_1 N) + \int_{\Omega_e} \mathcal{P}(N)^T \boldsymbol{\tau}_{SGS} \mathcal{R}(N) + \int_{\Omega_e} \nabla N^T (K_{DC} \nabla N)
\]
Solver Layout

Need to solve: \(\text{Res}(t, X, Y, \dot{Y}) \rightarrow 0 \)

Loop: Time stepping
- Second order implicit predictor-multicorrector

Loop: Solution non-linear system
- Globalized Newton-Krylov method

\[\left\| \text{Res} + \text{Jac}\Delta Y^{k+1} \right\| \leq \eta \left\| \text{Res} \right\| \]
\[Y^{k+1} = Y^k + \lambda \Delta Y^{k+1} \]

Loop: Solution linear system
- Preconditioned Generalized Minimal Residual (GMRES)

\[
\begin{align*}
Ax &= b \\
(P^{-1}A)x &= (P^{-1}b)
\end{align*}
\]
Time Stepping

- Solution of $\text{Res}(Y, \dot{Y}) = 0$ by 2nd order, implicit, predictor multi-corrector, with control of high frequency amplification

\[
\frac{Y_{n+1} - Y_n}{\Delta t} = (1 - \alpha_f) \dot{Y}_n + \alpha_f \dot{Y}_{n+1}
\]

\[
Y_{n+\alpha_f} = (1 - \alpha_f) Y_n + \alpha_f Y_{n+1}
\]

\[
\dot{Y}_{n+\alpha_m} = (1 - \alpha_m) \dot{Y}_n + \alpha_m \dot{Y}_{n+1}
\]

\[\text{Res}(Y_{n+\alpha_f}, \dot{Y}_{n+\alpha_m}) = 0\]

- For higher order use BD methods (i.e. Sundials’ IDA solver)
- α-method or BD only need: Res and Jac for a given $Y_n, \dot{Y}_n, \zeta = \frac{\partial Y_n}{\partial Y_n}$

- Need solution of non-linear system at each time step
Solution of Non-Linear System

• **Needed:** minimum function evaluations (expensive for complex physics → matrix–free, pseudo-trans. not very attractive)

\[
\left\| \text{Res} + \text{Jac}\Delta Y^{k+1} \right\| \leq \eta \|\text{Res}\|
\]

\[
Y^{k+1} = Y^k + \lambda \Delta Y^{k+1}
\]

>> Forcing term \(\eta \): Eisenstat-Walker

>> Backtracking: Armijo condition

>> Line search \(\lambda \): Parabolic - three point interpolation

* Backtracking essential when \(\Delta t \) still large
 (too large change in solution)
Solution of Linear System

• Generalized Minimal Residual (GMRES) with restarts + …

• Scaling: (unavoidable, unless dimensionless variables are used)
 \[D^{-1}Ax = D^{-1}b \quad \rightarrow \quad \tilde{A}x = \tilde{b}, \quad D = \text{diag}(A) \]

• Pre-preconditioning: (something to do to \(A \) and \(b \) before linear solve)
 \[P_0^{-1}\tilde{A}x = P_0^{-1}\tilde{b} \quad \rightarrow \quad \tilde{A}x = \tilde{b}, \quad P_0 = \text{block _ \ diag}(\tilde{A}) \quad \text{(EBE)} \]

• Preconditioning: (as usual)
 \[P^{-1}\tilde{A}x = P^{-1}\tilde{b} \quad \rightarrow \quad \tilde{A}x = \tilde{b}, \quad P = \ldots \]

<table>
<thead>
<tr>
<th></th>
<th>ILU(0)</th>
<th>ILU(tol)</th>
<th>Add. Schwz.</th>
<th>EBE-GS</th>
<th>BlkDiag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pre-PreCond</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PreCond</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

best (least expensive)
Verification & Validation

- Van Der Pol: \[y'' + \nu(1 - y^2)y + y = 0; \text{ as } \nu \uparrow \Rightarrow \text{stiffer problem} \]

\[\alpha \text{-method vs. Matlab's ODE 115s (variable order BD)} \]

- Driven cavity flow:
 - tested different Re
 - unsteady for Re > ~5000?

* same solver, only change: \(A_0, A, K, S_1, S_0, \tau_{SGS}, K_{DC} \)
Outline

1. Introduction & Background

2. Mathematical Model
 Conditions: Ar-He (75-25), 60 slpm, 800 A, straight injection

3. Numerical Model

4. Solution Approach

5. Preliminary Results

6. Conclusions & Further Work
Computational Domain Ω

- 3 cases:
 a) torch coarse 380k dof
 b) torch fine 620k dof
 c) torch + jet 850k dof
- hexahedral trilinear elements
- d.o.f. per node: 9 for LTE model (+11 for Non-Equil.)
Solution Parameters/Statistics

Time Advancement: \(\Delta t \sim 0.1 - 1.0 \) μs
\(nt \sim 500 - 1000 \) (each reattachment period \(\sim 100 \) μs)

Non-linear Solver: \(\sim 5 \) Inexact Newton ites. /\(\Delta t \)
\(\eta_0 = 1.0^{-2}, \eta_{\text{max}} = 1.0^{-3} \)
Backtracking needed @ beginning of reattachment
Stop: \(|\text{Res}|/|\text{Res}_0| \leq 0.1 \) & \(|\Delta Y|/|Y| \leq 1.0^{-3} \)

Linear Solver: Krylov space 30 x 5 restarts = 150 ites. /In. Newton
Scaling + Blck Diag. Pre-Preconditioner + No Preconditioner

\(nt: 474, t: 2.27e-04 \)
\(> \) Reattachment process begins
ite: 1, out/in: 2/ 4, fevals: 4, red: 2, flag: 0, lam: 0.25, eta: 1.00e-02, errY: 3.62e-02, errR: 1.00e+00
ite: 2, out/in: 1/14, fevals: 1, red: 0, flag: 0, lam: 1.00, eta: 5.62e-03, errY: 7.85e-01
ite: 3, out/in: 2/12, fevals: 1, red: 0, flag: 0, lam: 1.00, eta: 3.16e-03, errY: 2.34e-01
ite: 4, out/in: 2/19, fevals: 1, red: 0, flag: 0, lam: 1.00, eta: 1.78e-03, errY: 1.40e-01
ite: 5, out/in: 3/26, fevals: 1, red: 0, flag: 0, lam: 1.00, eta: 1.00e-03, errY: 9.76e-02
errSS: 2.06e-02, dtnew = 3.06e-07, SFAC = 1.07
Instantaneous temperature distribution inside the torch

Conditions: Ar-He (75-25), 800 A, 60 slpm, straight injection
Reattachment Process

- Attachment when arc close enough to anode
- Too long arc, high voltages → Reattachment Model needed
Reattachment Process – with Reattach. Model

- Insert high σ column where $|E_r| > E_0$
- Limits arc length, voltage drop ~ mimics physical reattach

new attachment
Arc Dynamics

original attachment

Electric potential over 14000 K isosurface
\[u_{in} \sim 30 \text{ [m/s]} \]
\[Mach_{in} \sim 0.01 \]

\[u_{out} +2500 \text{ [m/s]} \]
\[Mach_{out} \sim 0.70 \]

➢ from incompressible to compressible
Electric and Magnetic Potentials & Fields

- electric potential
 ~ independent of arc movement

- magnetic potential
 indicates position of arc
Arc and Jet Dynamics

Conditions: Ar-He (75-25), 800 A, 60 slpm, straight injection

- Turbulent jet clearly under-resolved
- Excessive damping
Arc Movement as Jet Forcing

simulation

experiment
Time Evolution of Arc Characteristics

Conditions: Ar-He (75-25), 800 A, 60 slpm, swirl 45°

- Simulation

 ![Simulation Graph](image)

- Experiment

 ![Experiment Graph](image)

- Main frequency agrees BUT amplitude doesn't
- Overall adequate description of arc dynamics
Non-LTE Model - Preliminary Results (2D)

- Axisymmetric, chemical equilibrium, two temperatures

- Thicker cold boundary layer

- Highest non-equilibrium

- Artificially high σ in front of anode not needed
Outline

1. Introduction & Background
2. Mathematical Model
3. Numerical Model
4. Solution Approach
5. Preliminary Results
6. Conclusions & Further Work

Temperature Distribution [kK] and Velocity Vectors
Conclusions & Further Work

• Developed: n-dimensional, transient, fully coupled, Stabilized/Multiscale-FEM solver for modeling TADR eqns.

• Results of LTE modeling of plasma flow:
 ▪ some aspects of arc dynamics revealed
 ▪ reasonable agreement with experiments

• Thermal and chemical non-equilibrium model under development (less assumptions, more physics)

• Code parallelization: C + MPI + PETSc
 (domain decomposition + NLS solver + Add. Schwarz)

• Study of plasma flow instability: eigenvalue analysis, forcing (need accurate Jac, effect of stabilization on stability?)
Stability Diagram

- **Input**: Operating parameters
 Output: Main frequency
- Simulations ~ primary branch → continuation algorithm needed

\[St = \frac{fL^3}{Q} \]

Steady, takeover, restrike

\[Nh = \left(\frac{\rho_0 h_0 \sigma_0}{\text{fluid}} \right) \left(\frac{L}{\text{geometry}} \right) \left(\frac{Q}{I^2} \right) \approx \frac{\text{flow power}}{\text{electric power}} \]

- Key for the design/control of plasma systems
Plasma – Surface Interaction

- Continuum approximation breaks down near surface (too steep gradients, too small distance)

- Hybrid continuum-discrete model needed:
 Continuum: Stabilized/VMS FEM
 Discrete: Molecular Dynamics

Loosely coupled approach: through Boundary Conditions
We Need a “Universal Solver” for TADR Systems

Solve systems in conservative and/or quasi-linear form:

\[
\frac{\partial U}{\partial t} + \nabla \cdot F - S = 0
\]

\[
A_0 \frac{\partial Y}{\partial t} + (A \cdot \nabla)Y - \nabla \cdot (K\nabla Y) - (S_1 Y + S_0) = 0
\]

- **Variation Multiscale Method**: Define \(A_0, A, K, S_1, S_0 \), etc …
 - + numerical eval. of the SGS term, i.e. mesh sequencing; or …
 - + find \(Y' \) by any other means, i.e. MD … (Heterogeneous Multiscale?)

- **DAE time stepping**: \(\alpha \)-method, variable order BD + adaptive \(\Delta t \)

- **Globalized Newton-Krylov**: GMRES + Line Search

- **Scalable Preconditioners**: Schwarz, AMG

A U-TADR Solver will boost scientific discovery!
\[\nabla \cdot (\sigma \nabla \phi) = 0 \]

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{u} = 0 \]

\[\nabla^2 \vec{A} = -\mu_0 \vec{j} \]

\[\rho \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} \right) = -\nabla p - \nabla \cdot \vec{T} + \vec{j} \times \vec{B} \]

\[\rho C_p \left(\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T \right) = \nabla \cdot \vec{q} + \vec{j} \cdot \vec{E}' - U_r + \frac{\kappa_B}{e} \vec{j} \cdot \nabla T \]

\[
\int_{\Omega} W R(Y) d\Omega + \int_{\Omega'} P(W) \tau R(Y) d\Omega' = 0
\]

Thank You
Heterogeneous Variational Multiscale Approach

HVMS:

\[
\text{Res}(Y, Y') = \int_{\Omega} W(\mathcal{L}Y - S_0) - \int_{\Omega'} \mathcal{L}^*(W)Y' = 0
\]

Algorithm:

1. Estimate \(Y \)
2. Solve for \(Y' \) having \(Y \) as background (i.e. by a particle model, sub-mesh)
3. Project \(Y' \) into \(Y \) space (or higher but consistent)
4. Compute element-level *large* and *small* terms (above)
5. Assemble global residual: \(\text{Res}(Y, Y') \rightarrow \text{Res}(Y) \) (and Jacobian)
6. Update \(Y \) (\(\text{Jac}\Delta Y \approx -\text{Res} \))
7. Go to 1 until convergence
Maxwell’s Equations and $\nabla \cdot B = 0$

- **Maxwell’s equations:**
 1) Ampere’s law: $\nabla \times \vec{B} = \mu_0 \vec{J}_q$
 2) Faraday’s law: $\nabla \times \vec{E} = -\partial \vec{B}/\partial t$
 3) Ohm’s law: $\vec{J}_q = \sigma (\vec{E} + \vec{u} \times \vec{B})$
 4) Gauss’ law: $\nabla \cdot \vec{J}_q = 0$
 5) No magnetic monopoles: $\nabla \cdot \vec{B} = 0$

- **3) in 1) \rightarrow in 2): Magnetic Induction Eqn. (MIE)**

 $$\frac{\partial \vec{B}}{\partial t} - \nabla \times (\vec{u} \times \vec{B}) + \nabla \times (\eta \nabla \times \vec{B}) = 0; \quad \eta = (\mu_0 \sigma)^{-1}$$

- **BUT… $\nabla \cdot \vec{B} = 0$ constraint is missing. To deal with it:**
 - Add extra “divergence” wave $= \text{add source term } \propto \nabla \cdot B$ (Powell et al)
 - Penalty methods (Reddy et al)
 - 4 eqns. \rightarrow 4 unknowns \Rightarrow solve for extra dummy variable (Fortin et al)
 - Others (compatible discretizations, projections, etc.)
Maxwell’s Equations and $\nabla \cdot B = 0$ (cont.)

An alternative: use magnetic and electric potentials…

$$\vec{B} = \nabla \times \vec{A} \quad (\nabla \cdot \vec{B} = 0 \text{ a priori})$$
$$\vec{E} = -\nabla \phi - \partial \vec{A}/\partial t \quad (\text{suggested from } \nabla \cdot \vec{J}_q = 0)$$

Then …

$$\frac{\partial \vec{A}}{\partial t} - \vec{u} \times \nabla \times \vec{A} + \nabla \phi + \eta \nabla \times \nabla \times \vec{A} = 0$$
$$- \nabla \cdot (\sigma \nabla \phi) - \nabla \cdot \sigma \left(\frac{\partial \vec{A}}{\partial t} - \vec{u} \times \nabla \times \vec{A} \right) = 0$$

Why is not the A-ϕ formulation more popular?

– 4 unknowns (instead of 3 in MIE)
– Cannot be expressed in divergence form
– Harder to specify boundary conditions (needs Gauge condition $\nabla \cdot \vec{A} = 0$)

In this research: no applied B fields \rightarrow BCs not crucial as far as A decays monotonically far from the arc (approx. Biot-Savart law)
Non-Equilibrium Formulation

• Thermodynamic Properties:
 – Mass conservation: \(n = \sum_{s=0}^{ns} n_s \)
 – Ideal gas: \(p_s = n_s k_B T_s \)
 – Dalton’s law: \(p = \sum_{s=0}^{ns} p_s \)
 – Quasineutrality: \(\sum_{s=0}^{ns} eZ_s n_s = 0 \)
 – Internal energy: \(e = e_{\text{trans}} + e_{\text{int}} = \frac{3}{2} \frac{k_B}{m} T + \frac{k_B T^2}{m} \left(\frac{\partial \ln Q_{\text{int}}}{\partial T} \right)_V \)
 \(Q_{\text{int}} = \sum g_1 \exp \left(-\frac{\theta_i}{T} \right) \)

• Transport Properties:
 – Chapman-Enskog approximation (Devoto, 1965): \(f_i = f_i^0 + \xi f_i^1 + \xi^2 f_i^2 + \ldots \approx f_i^0 (1 + \xi \phi_i) \)
 i.e. second order viscosity:
 \[[\mu] = \frac{-5(2\pi k_B T)^4}{2|\theta|} \begin{vmatrix} \hat{q}_{ij}^{00} & \hat{q}_{ij}^{01} & n_i m_j \hline \hat{q}_{ij}^{10} & \hat{q}_{ij}^{11} & 0 \hline n_j & 0 & 0 \end{vmatrix} \]
 first order binary diffusivity:
 \[[D_{ij}] = \frac{3\pi}{16} \left(\frac{2k_B T_{ij}}{n\mu_{ij}} \right)^{\frac{1}{2}} \frac{1}{nQ_{ij}^{(1,1)}} \]
 \(m_{ij} = \frac{m_i m_j}{m_i + m_j} \quad T_{ij} = \frac{m_i T_i + m_j T_j}{m_i + m_j} \)
Non-Equilibrium Formulation (cont.)

- Mass and charge diffusion:
 - Self-Consistent Effective Binary Diffusion, SCEBD (Ramshaw & Chang, 1990):
 \[
 \vec{J}_s = -\frac{D_s}{R_s T_s} \vec{G}_s' + y_s \sum_{j} \frac{D_j}{R_j T_j} \vec{G}_j' \quad \vec{G}_s' = \vec{H}_s - \rho_s q_s \left(\vec{E} + \vec{u}_s \times \vec{B} \right) + y_s \vec{J}_q \times \vec{B} \quad \vec{H}_s = p \nabla z_s + (z_e - y_e) \nabla p - \sum_j \left(\beta_{ej} \nabla \ln T_j - \beta_{je} \nabla \ln T_e \right)
 \]
 - Generalized Ohm’s law (consistent with SCEBD):
 \[
 \vec{J}_q = \sigma \left(\vec{E} + \vec{u}_e \times \vec{B} + \frac{\vec{H}_e}{e_n e} - y_e \frac{\vec{J}_q \times \vec{B}}{e_n e} \right) \quad \vec{H}_e = p \nabla z_e + (z_e - y_e) \nabla p - \sum_j \left(\beta_{ej} \nabla \ln T_j - \beta_{je} \nabla \ln T_e \right)
 \]
 - i.e. three-component plasma:
 \[
 \vec{J}_q = \sigma \left(\vec{E} + \vec{u}_e \times \vec{B} + \frac{\nabla p_e}{e_n e} - \frac{\vec{J}_q \times \vec{B}}{\rho_i} - \frac{\vec{J}_a \times \vec{B}}{\rho_i} \right)
 \]

- Chemical rates:
 - Finite rate chemistry:
 \[
 \dot{\rho}^c_s = M_s \sum_{r=1}^{n_s} \left(b_{s,r} - a_{s,r} \right) w_r \quad \dot{w}_r = -k_{f,r} \prod_i \left(\frac{\rho_i}{M_i} \right)^{a_{i,r}} + k_{b,r} \prod_i \left(\frac{\rho_i}{M_i} \right)^{b_{i,r}}
 \]

- Energy exchange:
 - Appleton & Bray, 1964:
 \[
 \dot{Q}_{eh} = \sum_{s=1}^{n_s} \frac{2 k_B}{m_s + m_e} \left(\frac{2 m_s m_e}{m_s + m_e} \right) \vec{v}_{se} (T_e - T_h)
 \]
 - Landau-Teller approx.
 \[
 \dot{Q}_{r-v} = \sum_{s=1}^{n_s} \rho_s \frac{e_{vs} (T) - e_{vs} (T_v)}{\tau_{vs}}
 \]
Direct-Current (DC) Arc Plasma Torch

SG-100 Plasma Spraying Torch

* http://www.praxair.com
Boundary Conditions

<table>
<thead>
<tr>
<th>Side</th>
<th>p</th>
<th>\mathbf{u}</th>
<th>T</th>
<th>ϕ</th>
<th>\mathbf{n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>$p = p_0$</td>
<td>$\mathbf{u} = \mathbf{u}_m(r)$</td>
<td>$T = T_m$</td>
<td>$\partial_\phi = 0$</td>
<td>$A_r = A_{\phi, r}$</td>
</tr>
<tr>
<td>Cathode</td>
<td>$\partial_\phi \mathbf{n} = 0$</td>
<td>$\mathbf{u}_i = 0$</td>
<td>$T = T_{\text{cathode}}(r)$</td>
<td>$\partial_\phi = 0$</td>
<td>$\partial_\mathbf{A} \mathbf{n} = 0$</td>
</tr>
<tr>
<td>Cathode</td>
<td>$\partial_\phi \mathbf{n} = 0$</td>
<td>$\mathbf{u}_i = 0$</td>
<td>$T = T_{\text{cathode}}(z)$</td>
<td>$-\partial_\phi \mathbf{n} = j_{\text{cathode}}(r)$</td>
<td>$\partial_\mathbf{A} \mathbf{n} = 0$</td>
</tr>
<tr>
<td>Outlet-z</td>
<td>$\partial_\phi \mathbf{n} = 0$</td>
<td>$\partial_\mathbf{r} \mathbf{n} = 0$</td>
<td>$\partial T = 0$</td>
<td>$\partial_\phi = 0$</td>
<td>$A_r = A_{\phi, r}$</td>
</tr>
<tr>
<td>Outlet-r</td>
<td>$p = p_{\text{atm}}$</td>
<td>$\partial_\mathbf{r} \mathbf{n} = 0$</td>
<td>$\partial T = 0$</td>
<td>$\partial_\phi = 0$</td>
<td>$\partial_\mathbf{A} \mathbf{n} = 0$</td>
</tr>
<tr>
<td>Wall</td>
<td>$\partial_\phi \mathbf{n} = 0$</td>
<td>$\mathbf{u}_i = 0$</td>
<td>$T = T_{\text{wall}}$</td>
<td>$\partial_\phi = 0$</td>
<td>$\partial_\mathbf{A} \mathbf{n} = 0$</td>
</tr>
<tr>
<td>Anode</td>
<td>$\partial_\phi \mathbf{n} = 0$</td>
<td>$\mathbf{u}_i = 0$</td>
<td>$-k \partial T \mathbf{n} = h_{\text{wall}}(T - T_{\text{wall}})$</td>
<td>$\phi = 0$</td>
<td>$\partial_\mathbf{A} \mathbf{n} = 0$</td>
</tr>
</tbody>
</table>

~ standard, axisymmetric & constant

- **Sponge Zone** (non-reflecting boundary)

- **Side 1:** inlet
- **Side 2:** cathode
- **Side 3:** cathode tip
- **Side 4:** outlet-z
- **Side 5:** outlet-r
- **Side 6:** wall
- **Side 7:** anode
Not even non-equil. can describe reattachment → **model needed**:

- **high σ in front of anode**
 - if $|E_r| > E_0$ → insert high σ channel where $|E_r|_{\text{max}}$
 - allows attachment movement @ low T_{anode}
 & reattachment process
1. Anode attachment dragged by flow follows an helix around anode surface

2. As arc elongates, $\Delta \varphi \uparrow$ ⇒ arc jumps to form a new attachment

3. New attachment remains, arc is dragged again, starting a new cycle
Takeover Mode - Different Torch Geometries

\[I = 600 \text{ A, Ar-H}_2 (75-25), 60 \text{ slpm, straight injection} \]

- Larger diameter → smaller reattach. frequency
- Constricted anode → longer arc, smaller freq.
- Smaller diameter → higher reattach. frequency
Electric and Magnetic Potentials & Fields - Jet
Modeling of Instabilities

- Flow, temperature and electromagnetic forcing, i.e. \(u = u_m + u' \)
- Perturbations limited by mesh size \(h \rightarrow \) high resolution required

\[\text{Parabolic Profile, } U_{\text{max}} = 100 \text{ [m/s]}\]

\[\text{Perturbation Function, } f_2 \propto \sqrt{U_2' U_2'}\]

\[\text{Perturbation Velocity Profile, } U_2'\]

\[\text{Total Velocity Profile}\]

- if unstable: small perturbations \(\rightarrow \) macroscopic effects on flow
A Simple Multiscale Problem

1st order ODE:

\[y' = 1, \quad y(0) = 0 \]

Solution:

\[y = x \]

Perturbed ODE (\(\varepsilon \to 0 \)):

\[-\varepsilon y'' + y' = 1, \quad y(0) = 0, \quad y(1) = 0 \]

Solution:

\[y = x - \left(\frac{1 - \exp(x/\varepsilon)}{1 - \exp(1/\varepsilon)} \right) \]

![Graph of the 1st order ODE and perturbed ODE with boundary layer indication.]
Multiscale Problems

Why are multiscale problems difficult?

- Any numerical method (i.e. finite differences, volumes, elements, spectral) will fail unless \(\Delta x < O(\varepsilon) \)

Why?

- Smallest scale needs to be resolved. Generally:
 \[
 \Delta x < \text{smallest spatial scale} \quad \& \quad \Delta t < \text{smallest temporal scale}
 \]

- Unmanageable in TADR equations in 3D

Solution:

- Design methods that take into account the effect of the smallest (unsolvable) scales into the large (solvable) scales (dumping the smallest scales also works)