Formation of Igneous Rocks
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Why do rocks melt?
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 Plagioclase Iherzolite
 Spinel Iherzolite

« Garnet lherzolite
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Lherzolite — olivine > orthopyroxene > Ca-pyroxene > aluminous phase
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Heat required to melt a rock. Note the very high latent heat of fusion.

High latent heat of fusion leads
to three outcomes

» Temperature of Earth does
not rise far above the solidus

 Liquids that form are lowest
possible melting fraction

e Earth’s crust has formed
from these low-melting
fractions
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Pyroxene phenocrysts in an Ophitic intergrowth of plagioclase Plagioclase phenocrysts in an
ophitic groundmass; plane light and pyroxene; crossed polars ophitic groundmass; plane light
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Nepheline phenocrysts Plagioclase phenocrysts
in granophyre
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Temperature (°C)

700 800 900 1000 1100 Hydrostatic and Lithostatic Equation

O —n | Pressure and anhydrous melting
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Exsolution of magmatic gases and
explosive volcanism

Disruption
of magma

Nucleation
of bubbles



Affect of hot gases
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Ash fall

Olduvai/Gorge

Basaltic magma
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Ngorongoro crater - volcanic eruption and caldera collapse
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Magma Density and Viscosity

Table 8.1 Viscosities of magmas and common substances.

Material Viscosity (Pa-s)  Weight % Si0,  Temp. (°C)

Water 1.002 x 107 - 20
ASE 30 motor oil 210 20
Kimberlite 107" =1

Komatiite 10" =10

Ketchup ~5x 10

Basalt 10 - 10°

Peanut butter ~2.5 X 10?

Crisco shortening 228107

Andesite ~3.5 % 10°

Silly Putty ~10*

Tonalite 6% H,0O ~10*

Rhyolite ~10°

Granite 6% H,O ~10°

Rhyolite ~10®

Average mantle 10* — —

Note: Magma viscosities from Dingwell (1995) and references therein. Granite and
Tonalite viscosities from Petford (2003). Mantle viscosity is from King (1995).
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Large blocks of obsidian on rhyolitic
lava flows.

Diffusion in magma — crystal growth

and grain size




Average Magma Compositions

Lunar Basalt Basalt Andesite Rhyolite Phonolite

43.56 49.2 57.94 72.82 56.19
2.60 1.84 0.87 0.28 0.62
7.87 15.74 17.02 13.27 14.04

3.79 3.27 1.48 2.79
21.66 7.13 4.04 1.11 2.03
0.28 0.20 0.14 0.06 0.17
14.88 6.73 3.33 0.39 1.07
8.26 9.47 6.79 1.14 2.12
0.23 2.91 3.48 3.55 7.79
0.05 1.10 1.62 4.30 5.24
0.11 0.67 0.39 0.08 0.05

0.95 0.83 1.10 1.57




Magma density is a function of

* Composition of the magma — higher atomic mass elements result in
higher density

» Temperature — higher temperatures — lower density

« Arough-rule of thumb is that a magma density is about 0.9 of its
equivalent rock density

Example — density of basalt.= 3000 kg/m3. If you melt basalt the resulting
magma will have a density of 2700 kg/m3. A more precise value can be
obtained by calculation.

Ascent of magmas

« By buoyancy when the magma has a lower density.than the
surrounding rock. When the density of the surrounding,rock = that of
the magma the magma will stop rising. For. example, the density of a
lower granitic crust is 2650 kg/m3. Magma will stop rising.

 Differential pressure — magmastatic pressure less than lithostatic
pressure
Pressure = density x acceleration due to'gravity x thickness



Cooling of magma bodies by conduction and convection
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Release of latent heat increases cooling time
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Magma erupting on surface normally cools too
rapidly to have a chance to undergo differentiation

Assimilation
Convection

Crystal muéh compaction
expels residual liquid upward

WITHIN MAGMA CHAMBERS

Convection

Magma mixing
Convection |

Dense minerals may settle to bottom
to form cumulates with residual
liquid remaining on top
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Crystals may separate from
liquid during flow.
Flowage differentiation.

Separation of crystals from liquid
changes magma composition
leading to magmatic differentiation

As magma rises it loses heat
and begins to crystallize.
Magma js.a mixture of
ligtid and:-crystals

Magma rises to a level
of neutral buoyancy

Crust

MOHO

Granitic magma

may rise as large
diapiric domes to
form batholiths

Heat released from crystallizing
basaltic magma may melt crustal
rocks to form granitic magma

Magma may intrude along base of crust

Basaltic magma
buoyantly rises
from mantle




Magmatic Differentiation

» Crystal settling

» Crystal mush compaction

« _Assimilation and fractional crystallization

« Liquid immiscibility

Assimilation

Liquid immiscibility



Stoke’s Law

- 2grz(ps _pl)
In
V = the settling velocity (m/sec)

g = the acceleration due to gravity (9.8 m/sec?)
r = the radius of a spherical particle (m)

V

ps = the density of the solid spherical particle (kg/m?3)
p; = the density of the liquid (kg/m?3)
n = the viscosity of the liquid (kg-m~!-s7'=1 Pa-s)



Olivine In basalt magma
Olivine (p = 3300 kg/m3, r=10.005 m)
Basaltic liquid (p, = 2650 kg/m3, n =100 Pa-s)
V =2.9.8-0.005%(3300-2650)/9-100 = 3.5 X*£0* m/sec

Rhyolitic magma
n = 10° Pa-s and p, = 2300 kg/m3
hornblende crystal (p, = 3200 kg/m3, r = 0.001 m)
V =2 x 108 m/sec, or 0.6 m/year
feldspar crystal (p, = 2700 kg/m?)
V =0.27 m/year
= 2747 m in the 10 years that a stock might cool

If 0.005 m in radius (0.01 m diameter) settles at 0.65 meters/year,
or 6.5 km in 10% year cooling of stock
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Evolution of the Isotopic Reservoirs in the Earth’s Mantle
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