Formation of Igneous Rocks

Why do rocks melt?

- Increasing temperature
- Decreasing pressure
- Adding water

Types of Mantle rocks

- Plagioclase lherzolite
- Spinel lherzolite
- Garnet lherzolite

Lherzolite \rightarrow olivine > orthopyroxene > Ca-pyroxene > aluminous phase

Plagioclase lherzolite

Spinel Iherzolite

Garnet lherzolite

Heat required to melt a rock. Note the very high latent heat of fusion.

High latent heat of fusion leads to three outcomes

- Temperature of Earth does not rise far above the solidus
- Liquids that form are lowest possible melting fraction
- Earth's crust has formed from these low-melting fractions

Experimental Petrology

Zoning in plagioclase crystal

Hypersolvus granite

Subsolvus granite

(A)

- Hydrostatic and Lithostatic Equation
- Pressure and anhydrous melting
- Dissolution of water in melts (OH) at low pressures, (H₂0) at high pressures
- Water undersaturated and water saturated melting
- Other gases in magmas

Stoke's Law: $V = \frac{2}{9} \frac{g(\rho_s - \rho_f)r^2}{\mu}$

Exsolution of magmatic gases and explosive volcanism

Affect of hot gases

Etna

Bisbee

(B)

Rhyolitic eruption Afar

Ngorongoro crater - volcanic eruption and caldera collapse

Magma Density and Viscosity

Table 8.1	Viscosities of magmas and common substances.	

Material	Viscosity (Pa·s)	Weight % SiO ₂	Temp. (°C)	
Water	1.002×10^{-3}	с . – с	20	
ASE 30 motor oil	2×10^{-1}	-	20	
Kimberlite	$10^{-1} - 1$	30-35	~1000	
Komatiite	$10^{-1} - 10$	40-45	1400	
Ketchup	~5 × 10	-	20	
Basalt	$10 - 10^2$	45-52	1200	
Peanut butter	$\sim 2.5 \times 10^{2}$	-	20	
Crisco shortening	2×10^{3}	-	20	
Andesite	$\sim 3.5 \times 10^{3}$	~58-62	1200	
Silly Putty	~104			
Tonalite 6% H ₂ O	~104	65	950	
Rhyolite	~10 ⁵	~73-77	1200	
Granite 6% H ₂ O	~10 ⁵	75	750	
Rhyolite	~108	~73-77	800	
Average mantle	1021	_	-	

Note: Magma viscosities from Dingwell (1995) and references therein. Granite and Tonalite viscosities from Petford (2003). Mantle viscosity is from King (1995).

Pahoehoe flow on side of large blister

Pahoehoe flow on top of aa flow

Large blocks of obsidian on rhyolitic lava flows.

Diffusion in magma – crystal growth and grain size

Average Magma Compositions

	Lunar Basalt	Basalt	Andesite	Rhyolite	Phonolite
SiO ₂	43.56	49.2	57.94	72.82	56.19
TiO ₂	2.60	1.84	0.87	0.28	0.62
Al_2O_3	7.87	15.74	17.02	13.27	14.04
Fe ₂ O ₃		3.79	3.27	1.48	2.79
FeO	21.66	7.13	4.04	1.11	2.03
MnO	0.28	0.20	0.14	0.06	0.17
MgO	14.88	6.73	3.33	0.39	1.07
CaO	8.26	9.47	6.79	1.14	2.72
Na ₂ O	0.23	2.91	3.48	3.55	7.79
K ₂ O	0.05	1.10	1.62	4.30	5.24
P_2O_5	0.11	0.67	0.39	0.08	0.05
H ₂ O		0.95	0.83	1.10	1.57

Magma density is a function of

- Composition of the magma → higher atomic mass elements result in higher density
- Temperature higher temperatures \rightarrow lower density
- A rough rule of thumb is that a magma density is about 0.9 of its equivalent rock density

Example – density of basalt = 3000 kg/m^3 . If you melt basalt the resulting magma will have a density of 2700 kg/m^3 . A more precise value can be obtained by calculation.

Ascent of magmas

- By buoyancy when the magma has a lower density than the surrounding rock. When the density of the surrounding rock = that of the magma the magma will stop rising. For example, the density of a lower granitic crust is 2650 kg/m³. Magma will stop rising.
- Differential pressure magmastatic pressure less than lithostatic pressure

Pressure = density x acceleration due to gravity x thickness

Cooling of magma bodies by conduction and convection

Cooling across an igneous contact.

Release of latent heat increases cooling time

Magmatic Differentiation

- Crystal settling
- Crystal mush compaction
- Assimilation and fractional crystallization
- Liquid immiscibility

Assimilation

Liquid immiscibility

Stoke's Law

$$V = \frac{2gr^2(\rho_s - \rho_l)}{9\eta}$$

- V = the settling velocity (m/sec)
- g = the acceleration due to gravity (9.8 m/sec²)
- **r** = the *radius* of a spherical particle (m)
- ρ_s = the density of the solid spherical particle (kg/m³)
- ρ_1 = the density of the liquid (kg/m³)
- η = the viscosity of the liquid (kg·m⁻¹·s⁻¹= 1 Pa·s)

Olivine in basalt magma

Olivine ($\rho_s = 3300 \text{ kg/m}^3$, r = 0.005 m) Basaltic liquid ($\rho_l = 2650 \text{ kg/m}^3$, $\eta = 100 \text{ Pa} \cdot \text{s}$) $V = 2.9.8 \cdot 0.005^2 (3300 \cdot 2650) / 9 \cdot 100 = 3.5 \times 10^{-4} \text{ m/sec}$

Rhyolitic magma

 $\eta = 10^{5} \text{ Pa} \cdot \text{s and } \rho_{1} = 2300 \text{ kg/m}^{3}$ hornblende crystal ($\rho_{s} = 3200 \text{ kg/m}^{3}, r = 0.001 \text{ m}$) $V = 2 \text{ x } 10^{-8} \text{ m/sec, or } 0.6 \text{ m/year}$ feldspar crystal ($\rho_{1} = 2700 \text{ kg/m}^{3}$) V = 0.27 m/year $= 2747 \text{ m in the } 10^{4} \text{ years that a stock might cool}$ If 0.005 m in radius (0.01 m diameter) settles at 0.65 meters/year, or 6.5 km in 10⁴ year cooling of stock

Cumulus textures and cumulate rocks

Orthocumulate

