Earth Materials II Review - Crystal Structures & Symmetry

Definition of a mineral

- Naturally occurring
- Characteristic internal structure
- Chemical composition either fixed or varies within certain limits (solid solution minerals)

Types of Bonding

Table 7-2. Electronegativities								
	Electro-			Electro-				Electro-
Ζ	Ion	negativity	Ζ	Ion	negativity	Ζ	Ion	negativity
1	H^+	2.20	33	As^{5+}	2.18	65	$\mathbf{D}\mathbf{y}^{3+}$	1.22
3	Li ⁺	0.98	34	Se ²⁻	2.55	67	Ho ³⁺	1.23
4	Be ²⁺	1.57	35	Br⁻	2.96	68	Er ³⁺	1.24
5	\mathbf{B}^{3+}	2.04	37	Rb ⁺	0.82	69	Tm^{3+}	1.25
6	C^{4+}	2.55	38	Sr^{2+}	0.95	70	Yb^{3+}	
7	N^{5+}	3.04	39	Y^{3+}	1.22	71	Lu ³⁺	1.0
8	O^{2-}	3.44	40	Zr^{4+}	1.33	72	Hf^{4+}	1.3
9	F	3.98	41	Nb^{5+}	1.6	73	Ta ⁵⁺	1.5
11	Na ⁺	0.93	42	Mo^{6+}	2.16	74	W^{6+}	1.7
12	Mg^{2+}	1.31	43	Tc^{2+}	2.10	75	Re ⁷⁺	1.9
13	A1 ³⁺	1.61	44	Ru^{2+}	2.2	76	Os ⁶⁺	2.2
14	Si^{4+}	1.90	45	$\mathbf{R}\mathbf{h}^{2+}$	2.28	77	Ir^{6+}	2.2
15	P ⁵⁺	2.19	46	Pd^{2+}	2.20	78	$\mathbf{P}t^{4+}$	2.2
16	S ²⁻	2.58	47	Ag^+	1.93	79	Au^+	2.4
17	Cl	3.16	48	Cd^{2+}	1.69	80	Hg^{2+}	1.9
19	\mathbf{K}^+	0.82	49	In ³⁺	1.78	81	Tl^{3+}	1.8
20	Ca^{2+}	1.00	50	\mathbf{Sn}^{2+}	1.96	82	Pb^{2+}	1.8
21	Sc^{3+}	1.36	51	Sb ⁵⁺	2.05	83	Bi ³⁺	1.9
22	Ti^{4+}	1.54	52	Te ²⁻	2.1	84	Po^{4+}	2.0
23	V^{3+}	1.63	53	Ŀ	2.66	85	At^{5+}	2.2
24	Cr^{3+}	1.66	55	Cs^+	0.79	87	Fr^{+}	0.7
25	$M n^{2+}$	1.55	56	Ba ²⁺	0.89	88	Ra ²⁺	0.9
26	Fe ²⁺	1.83	57	La ³⁺	1.10	89	Ac ³⁺	1.1
27	Co ²⁺	1.88	58	Ce ³⁺	1.12	90	Th^{4+}	1.3
28	Ni ²⁺	1.91	59	Pr ³⁺	1.13	91	Pa ⁴⁺	1.5
29	\mathbf{Cu}^+	1.90	60	Nd ³⁺	1.14	92	$\mathrm{U}^{_{6+}}$	1.7
30	Zn^{2+}	1.65	62	S m ³⁺	1.17	93	Np^{3+}	1.3
31	Ga ³⁺	1.81	64	Gd^{3+}	1.20	94	Pu ⁴⁺	1.3
32	Ge ⁴⁺	2.01						

Difference in electronegativity	Ionic character, %	Difference in electronegativity	Ionic character, %
0.1	0.5	1.7	51
0.2	1	1.8	55
0.3	2	1.9	59
0.4	4	2.0	63
0.5	6	2.1	67
0.6	9	2.2	70
0.7	12	2.3	74
0.8	15	2.4	76
0.9	19	2.5	79
1.0	22	2.6	82
1.1	26	2.7	84
1.2	30	2.8	86
1.3	34	2.9	88
1.4	39	3.0	89
1.5	43	3.1	91
1.6	47	3.2	92

Table 7-3. Percent ionic character of a single chemical bond

Coordination Principle

Radius Ratio = Radius cation/Radius Anion

This ratio determines how many anions can be packed around a cation.

Packing of anions around a cation for a coordination number of 4. The minimum radius ratio can be calculated from the geometry of the packing. R_a and R_c are the radii of the anion and cation, respectively. In this case, $\theta = 45^{\circ}$.

	Radius ratio R _A /R _X limits	C.N.	Geometric shape				
	0.155 to 0.225	Ξ	Anion Cation	Corners of an equilateral triangle (triangular coordination)			
	0.225 to 0.414	IV		Corners of a tetrahedron (tetrahedral coordination)			
	0.414 to 0.732	VI		Corners of an octahedron (octahedral coordination)			
	0.732 to 1.0	VIII		Corners of a cube (cubic coordination)			
	1.0	XII		Corners of a cuboctahedron (close packing)			

Ionic Substitution

- Ions of one element can substitute for those of another in a crystal structure if their radii differ by less than about 15%
- Ions that differ by one charge unit substitute readily for each other as long as charge neutrality is maintained. Note that this requires a coupled substitution, such as occurs in the plagioclase solid solution series.
- When two ions can occupy the same site in a crystal structure, the ion with the higher ionic potential preferentially enters the site.
- Even if the size and charge of the minor and major ion are similar, substitution may be limited for the minor ion if it has a very different electronegativity and forms a bond of very different character from that of the major ion.

Solid solution series – olivine and feldspar

The six crystallographic systems.

SUPER IMPORTANT

Polymorphism - the ability of a substance to adopt different internal structures and external forms, in response to different conditions of temperature and/or pressure

Types of polymorphism

- Reconstructive extensive rearrangement of the crystal structure involving breaking of bonds and reassembly of structural units into different arrangements.
- Displacive slight rearrangement of crystal structure. No bonds are broken.
- Order-disorder ordering of individual elements in different structural sites in a mineral.
- Polytypism different structural arrangements due to different stacking of sheets in three dimensions (sheet silicates).

Example of order-disorder polymorphism – the polymorphs of $KAlSi_3O_{8.}$

The distinction between the polymorphs is based on the ordering of Al in the tetrahedral sites.

- Microcline low T polymorph one in every four tetrahedral sites is filled with an Al. Total order
- Orthoclase moderate T polymorph Al is distributed over two equivalent tetrahedral sites. Partially ordered
- Sanidine high T polymorph equal probability of finding Al in any of the four tetrahedral sites. Completely disordered.

