Earth Materials II
 Review - Crystal Structures \& Symmetry

Definition of a mineral

- Naturally occurring
- Characteristic internal structure
- Chemical composition either fixed or varies within certain limits (solid solution minerals)

Types of Bonding

Formation of Covalent Bonds

Oxygen atom

Carbon atom
Oxygen atom

Carbon dioxide molecule $\left(\mathrm{CO}_{2}\right)$

Van der Waals bonding

Ionic bonding

NaCl crystal

Positive side

Hydrogen bonding

Ta ble 7-2. Electroneg ativities

Z	Ion	Electronegativity	Z	Ion	Electronegativity	Z	Ion	$\begin{gathered} \hline \text { Electro- } \\ \text { negativity } \end{gathered}$
1	H^{+}	2.20	33	As^{5+}	2.18	65	Dy ${ }^{3+}$	1.22
3	Li^{+}	0.98	34	Se^{2-}	2.55	67	Ho^{3+}	1.23
4	Be^{2+}	1.57	35	Br^{-}	2.96	68	Er^{3+}	1.24
5	B^{3+}	2.04	37	Rb^{+}	0.82	69	Tm^{3+}	1.25
6	C^{4+}	2.55	38	Sr^{2+}	0.95	70	Yb^{3+}	---
7	N^{5+}	3.04	39	Y^{3+}	1.22	71	Lu^{3+}	1.0
8	O^{2-}	3.44	40	Zr^{4+}	1.33	72	Hf^{4+}	1.3
9	F^{-}	3.98	41	Nb^{5+}	1.6	73	Ta^{5+}	1.5
11	Na^{+}	0.93	42	Mo^{6+}	2.16	74	W^{6+}	1.7
12	Mg^{2+}	1.31	43	Tc^{2+}	2.10	75	Re^{7+}	1.9
13	Al^{3+}	1.61	44	Ru^{2+}	2.2	76	Os ${ }^{6+}$	2.2
14	Si^{4+}	1.90	45	Rh^{2+}	2.28	77	Ir^{6+}	2.2
15	$\mathrm{P}^{\text {5+ }}$	2.19	46	Pd^{2+}	2.20	78	Pt^{4+}	2.2
16	S^{2-}	2.58	47	Ag^{+}	1.93	79	Au^{+}	2.4
17	Cl^{-}	3.16	48	Cd^{2+}	1.69	80	Hg^{2+}	1.9
19	K^{+}	0.82	49	In^{3+}	1.78	81	Tl^{3+}	1.8
20	Ca^{2+}	1.00	50	Sn^{2+}	1.96	82	Pb^{2+}	1.8
21	Sc^{3+}	1.36	51	Sb^{5+}	2.05	83	Bi^{3+}	1.9
22	Ti^{4+}	1.54	52	Te^{2}	2.1	84	Po^{4+}	2.0
23	V^{3+}	1.63	53	I	2.66	85	At^{5+}	2.2
24	Cr^{3+}	1.66	55	Cs^{+}	0.79	87	Fr^{+}	0.7
25	Mn^{2+}	1.55	56	Ba^{2+}	0.89	88	Ra^{2+}	0.9
26	Fe^{2+}	1.83	57	La^{3+}	1.10	89	Ac^{3+}	1.1
27	Co^{2+}	1.88	58	Ce^{3+}	1.12	90	Th^{4+}	1.3
28	$\mathrm{Ni}^{\mathbf{2 +}}$	1.91	59	Pr^{3+}	1.13	91	Pa^{4+}	1.5
29	Cu^{+}	1.90	60	Nd^{3+}	1.14	92	U^{6+}	1.7
30	Zn^{2+}	1.65	62	Sm^{3+}	1.17	93	Np^{3+}	1.3
31	Ga^{3+}	1.81	64	Gd^{3+}	1.20	94	Pu^{4+}	1.3
32	Ge^{4+}	2.01						

Table 7-3. Percent ionic character of a single chemical bond

Difference in electronegativity	Ionic character, \%	Difference in electronegativity	Ionic character, \%
0.1	0.5	1.7	51
0.2	1	1.8	55
0.3	2	1.9	59
0.4	4	2.0	63
0.5	6	2.1	67
0.6	9	2.2	70
0.7	12	2.3	74
0.8	15	2.4	76
0.9	19	2.5	79
1.0	22	2.6	82
1.1	26	2.7	84
1.2	30	2.8	86
1.3	34	2.9	88
1.4	39	3.0	89
1.5	43	3.1	91
1.6	47	3.2	92

Coordination Principle

Radius Ratio = Radius cation/Radius Anion

This ratio determines how many anions can be packed around a cation.

- Ions of one element can substitute for those of another in a crystal structure if their radii differ by less than about 15%
- Ions that differ by one charge unit substitute readily for each other as long as charge neutrality is maintained. Note that this requires a coupled substitution, such as occurs in the plagioclase solid solution series.
- When two ions can occupy the same site in a crystal structure, the ion with the higher ionic potential preferentially enters the site.
- Even if the size and charge of the minor and major ion are similar, substitution may be limited for the minor ion if it has a very different electronegativity and forms a bond of very different character from that of the major ion.

Solid solution series - olivine and feldspar

The six
 crystallographic
 systems.

SUPER

 IMPORTANT
$a_{1}=a_{2}=a_{3}$; all axes
at 90° to each other

Hexagonal

$a_{1}=a_{2}=a_{3} ;$ intersecting at 120° c perpendicular to plane with a_{1}, a_{2}, a_{3}

Tetragonal

$\alpha \neq \beta \neq \gamma$

Polymorphism - the ability of a substance to adopt different internal structures and external forms, in response to different conditions of temperature and/or pressure

Types of polymorphism

- Reconstructive - extensive rearrangement of the crystal structure involving breaking of bonds and reassembly of structural units into different arrangements.

- Displacive - slight rearrangement of crystal structure. No bonds are broken.
- Order-disorder - ordering of individual elements in different structural sites in a mineral.
- Polytypism - different structural arrangements due to different stacking of sheets in three dimensions (sheet silicates).

Example of order-disorder polymorphism the polymorphs of $\mathrm{KAlSi}_{3} \mathrm{O}_{8}$.

The distinction between the polymorphs is based on the ordering of Al in the tetrahedral
 sites.

- Microcline - low T polymorph - one in every four tetrahedral sites is filled with an Al. Total order
- Orthoclase - moderate T polymorph - Al is distributed over two equivalent tetrahedral
 sites. Partially ordered
- Sanidine - high T polymorph - equal probability of finding Al in any of the four tetrahedral sites. Completely disordered.

