

Environmental and Geological Applications of Instrumental Neutron Activation Analysis

"Instrumental Neutron Activation Analysis is an obsolete analytical technique."

NSF program director

Yes, No, Maybe?

Principles of Instrumental Neutron Activation Analysis

The n–gamma Reaction The basic reaction for INAA

Example: 58 Fe + 1 n \longrightarrow 59 Fe + Beta⁻ + gamma rays Gamma ray energies = 142.4, 1099.2, 1291.6 KeV

Different neutron energies are used for different types of experiments.

UML 1 Mw Research Reactor

The Neutron Source

Data acquisition flow sheet

UML INAA Lab

INAA Analysis Scheme

- Irradiate sample (thermal neutrons)
- Count sample 5 to 10 days after irradiation to determine short-lived isotopes
- Count sample 4 to 8 weeks after irradiation to determine long-lived isotopes
- Calculate concentrations after applying decay, interference, fluence, and fission-product corrections.

Sensitivity (pg)

Elements

1 Dy, Eu

- 1-10 In, Lu, Mn
- 10-100 Au, Ho, Ir, Re, Sm, Lu

100-1E3 Ag, Ar, As, Br, Cl, Co, Cs, Cu, Er, Ga, Hf, I, La,

Sb, Sc, Se, Ta, Tb, Th, Tm, U, W, Yb

1E3-1E4 AI, Ba, Cd, Ce, Cr, Hg, Kr, Gd, Ge, Mo, Na, Nd,

Ni, Os, Pd, Rb, Rh, Ru, Sr, Te, Zn, Zr

1E4-1E5 Bi, Ca, K, Mg, P, Pt, Si, Sn, Ti, Tl, Xe, Y

1E5-1E6 F, Fe, Nb, Ne

1E7 Pb, S

Elements routinely analyzed in environmental and geological samples at UML.

Advantages of INAA

- Can analyze a large number of elements simultaneously
- Very low detection limits for many elements
- Small sample sizes (1 200 mg)
- No chemical preparation
- Nondestructive. The material is available for other analytical techniques
- Relatively low entry cost (~\$60,000) compared to other high sensitivity analytical methods

Major Disadvantage of INAA compared to ICP-MS

Can't analyze for all elements of interest. Partner with Xray fluorescence spectrometry (XRF)

Elements analyzed by combined INA-XRF Analysis

INA	XRF								
Na	Na	Cr	Cr	Rb	Rb	Nd	Nd	Та	
	Mg	Mn	Mn	Sr	Sr	Sm		W	
1	Al	Fe	Fe		Y	Eu		Au	
	Si	Со	Co	Zr	Zr	Gd			Pb
	P	Ni	Ni		Nb	Tb		Th	Th
K	K		Cu	Sb		Но		U	
	Ca	Zn	Zn	Cs		Тт			
Sc			Ge	Ba	Ba	Yb			
	Ti	As		La	La	Lu			
	V	Se		Ce	Ce	Hf			

*Bold Italics – preferred method

So, Is INAA Obsolete?

"I am a little concerned about the quality of some of the trace element data but this is a general criticism of the way geochemists are doing ICP-MS. Personally, I don't think REE data at +/- 5-10% are "fit to purpose" but this is what many ICP-MS labs are producing. *Certainly* such data are of inferior quality to the ID and INAA **REE** data we laboured long and hard to produce 20 years ago. One can do 1-2% RSD on REE by ICP-MS but you need to understand, monitor and correct all the potential pitfalls." Comments from a *Lithos* review.

No!

For many applications it is the method of choice or is a competitive choice with respect to ICP-MS.

Applications of INAA at UML

- Trace element analysis rocks and minerals
- Sediment and soil compositions
- Partitioning of metals between phases in coal
- Origin of archaeological artifacts
- Tephra correlation for archaeological studies
- Trace metals in nanotech materials
- Forensics
- Chemistry of atmospheric aerosols
- Distribution of metals in tree rings
- Chemistry of grasses

Chemistry of Atmospheric Aerosols Deposition of Aerosols Onto Mass Bays

Co-Investigators D. Golomb, UML D. Ryan, UML J. Underhill, UML S. Zemba, Cambridge Environmental, Inc.

Fig. 1 Map of Massachusetts Bay. Nahant and Truro field sites are indicated. Shaded areas indicate population centers greater than 20,000 people.

Location of aerosol sampling sites – Nahant and Truro

Wet & Dry Collectors

Field site

(Photographs courtesy of Dr. David Ryan, UML)

Dichot sampler

Dry and wet total deposition amounts were calculated for both sites. Atmospheric aerosols were major contributors of Fe, Mn, Zn, and Cd to Mass **Bays. For most metals dry** deposition was greater at Nahant presumably because of the close proximity of the site to **Metropolitan Boston.** Factor analysis was used to identify and apportion the sources of the aerosols.

Rotated Factor Loadings for Nahant Dry Deposition							
Element	F1	F2	F3	F4	Communality		
As	0.84				75.3		
Се	0.91				87.8		
Fe	0.88				89.1		
La	0.86				86.9		
Sc	0.94				93.9		
Sm	0.96				94.7		
Cd		0.83			80.5		
Со		0.80			70.0		
Cr		0.82			86.2		
Cu		0.76			72.4		
Ni		0.50	0.49		51.5		
AI			0.60		46.3		
Mn			0.46		46.8		
Pb			0.72		52.1		
Sb				0.70	71.3		
Se				0.66	46.9		
Zn				0.40	44.7		
%Variance	46.6	18.9	11.0	6.1	82.7		
F1 – automotive & crustal, F2 – oil combustion, F3 – soil, F4 – coal combustion & incineration.							

Can we tell if F1 represents a crustal or automotive source?

Yes! The value of REE geochemistry

- Chondrite-normalized patterns are distinctive for different sources
- We use chondrite (a meteorite type representative of the composition of the earth's mantle) normalization to remove the variability in elemental abundances (Oddo-Harkins rule)

Figure 2.2 Abundances of the chemical elements in the solar system in terms of atoms per 10° atoms of Si. The data were derived primarily by analysis of carbonaceous chondrite meteorites and by optical spectroscopy of light from the Sun and nearby stars (Anders and Ebihara, 1982).

F1 is a crustal, not an automotive source

Tree-ring width and isotopic records showing industrially induced physiological stress and recovery of trees in the northeastern USA: Carbon-cycle implications

Co-Investigators

Long Li, Zicheng Yu, Gray Bebout, T. Stretton, Andrew Allen, Peter Passaris

Lehigh University

Between 1898 and 1980 New Jersey Zinc had several operating smelters at Palmerton, PA. Electrostatic precipitators were installed in 1953.

Department Environmental, Earth, & Atmospheric Sciences

Metal variations in tree-ring cores

Time – concentration plots for As, Se, and Zn showing sensitivity and error associated with INAA measurements.

Forensics – Source of the Maple Syrup

Collecting sap the old fashioned way

Collecting sap the modern way. Plastic barrels and polyethylene tubing.

Department Environmental, Earth, & Atmospheric Sciences

Transferring sap to the sugar house

Sap holding vats

Boiling down the sap

Concentrations (ppm) and ratios of trace metals in Maple Syrup

		Sec. Parties and	S. E. TEL	S. 5. 643	
	Quebec	Newton	Winsor	Parker	Gale
Sc	0.030	0.010	0.009	0.004	0.006
Cr	1.67	0.67	0.71	0.83	0.87
Co	0.119	0.094	0.064	0.073	0.057
Zn	19.4	9.3	13.1	50.6	76.3
Rb	9.0	7.5	3.1	10.2	15.7
Sr	17.5	28.6	13.7	10.7	8.3
As	0.016	0.029	0.014	0.022	0.010
Sb	0.009	0.018	0.010	0.034	0.010
Se	8.72	ppb	PLESTRO		MB.
Zn/Cr	11.6	13.9	18.5	61	88
Rb/Cs	419	642	OZ. (1 363946 ML	433	175
Ba/Sr	0.37	0.59	0.18	0.76	1.29
As/Sb	1.91	1.59	1.50	0.64	2.24

Trace metals in nanotech materials – Respirable particles

	Carbon		Nano			Nano	
Element	Black	Fullerene	TiO ₂	CNT	Silica	alumina	
Fe	25.9	11.7	24.1	2441	450	18.6	ppm
Sc	0.002	0.003	4.88	nd	0.200	0.028	ppm
Cr	0.303	0.099	2.18	536	1.68	0.714	ppm
Co	0.015	0.024	0.43	19582	0.30	0.030	ppm
Ni	0.3	0.4	nd	317	64	0.2	ppm
Zn	8.26	4.15	32.8	1202	6.45	37.5	ppm
Ba	nd	0.89	52.4	nd	14.8	nd	ppm
Sr	6.0	nd	nd	nd	9.7	nd	ppm
Ce	4.79	3.91	1.56	nd	4.60	3.36	ppm
Zr	nd	nd	13743	1305	32.2	134	ppm
Та	0.010	0.017	61.9	nd	0.048	0.008	ppm
As	0.050	0.010	16.3	0.58	0.212	0.022	ppm
Мо	nd	nd	1.6	415	nd	nd	ppm
Sb	0.020	0.002	321	16.27	0.089	1.23	ppm
W	0.030	0.004	11.96	0.46	0.034	27.9	ppm
Au	47.5	0.03	99.7	1.29	nd	nd	ppb
Se	nd	0.66	nd	nd	9.5	23.5	ppb

Serengeti burning and animal behavior – chemistry of grasses Collaborative project with S. Eby, Syracuse University

Predators

Fire management plan – controlled burning

Department Environmental, Earth, & Atmospheric Sciences

Animals rapidly move to burned areas – why?

Grazers move into burned areas because: Better visibility – longer sight lines for seeing predators

Fewer insects

Change in nutrient content of grasses

Nutrients in ash

- Other

Change in elemental concentrations in grasses before and after an area is burned. In most cases elemental concentrations increase after burning. The notable exception is Cr.

First ever REE concentrations determined for Serengeti grasses. **Concentrations are** in the range 1000 to **10 nanograms. REE** patterns reflect **REE concentrations** of the underlying weathered volcanic ash.

That's All Folks!

Staur-mica schist