

Instrumental Neutron Activation Analysis (INAA) – Practice and Potential Forensic Applications

Nelson Eby

University of Massachusetts Lowell

The n-gamma Reaction The basic reaction for INAA

Example: 58 Fe + 1 n \longrightarrow 59 Fe + Beta⁻ + gamma rays Gamma ray energies = 142.4, 1099.2, <u>1291.6 KeV</u>

UML 1 Mw Research Reactor

The Neutron Source

Different neutron energies are used for different types of experiments.

Data acquisition flow sheet

UML INAA Lab

Detection limits (DL) for elements that can be determined by INAA

DL (nanograms)	Elements
0.01-0.1	Au, Eu, Ho, Ir, Sm, Lu
0.1-1	Ag, As, Co, Cs, Hf, La, Sb, Sc, Se, Ta, Tb, Th, Tm, U, W, Yb
1-10	Ba, Br, Ce, Cr, Gd, Mo, Na, Nd, Ni, Rb, Sr, Zn, Zr
10-100	κ
100-1000	Fe

Advantages of INAA

- Can analyze a large number of elements simultaneously
- Very low detection limits for many elements
- Small sample sizes (1 200 mg)
- No chemical preparation
- Nondestructive. The material is available for other analytical techniques
- Relatively low entry cost (~\$60,000) compared to other high sensitivity analytical methods

Forensics – Source of the Maple Syrup

Collecting sap the old fashioned way

Collecting sap the modern way. Plastic barrels and polyethylene tubing.

Department Environmental, Earth, & Atmospheric Sciences

Transferring sap to the sugar house

Sap holding vats

Boiling down the sap

Concentrations (ppm) and ratios of trace metals in Maple Syrup

Serengeti plains

Serengeti Grasses Digiteria Sporobolus Themeda

Sample Locations and Geology Trace element distributions for grasses from geographic areas with different bedrock geology.

Summary of Materials Used in Glazes			
Material	Chemistry		
Bentonite	$((Na,Ca)_{0.33}(Al,Mg)_2(Si_4O_{10})(OH)_2 \cdot nH_2C)$		
Cryolite	Na ₃ AlF ₆		
Dolomite	CaMg(CO ₃) ₂		
Epsom salts	MgSO ₄ ·7H ₂ O		
Fluorspar	CaF ₂		
Gerstley borate	2CaO.3B ₂ O ₃ .5H ₂ O		
Kaolin (Kaolinite)	$Al_2Si_2O_5(OH)_4$		
Lepidolite	$K(Li,Al)_{3}(Al,Si)_{4}O_{10}(F,OH)_{2}$		
Lithium carbonate	LiCO ₃		
Nepheline syenite	Various Na-K-Al silicate minerals		
Potash feldspar (K-spar)	KAlSi ₃ O ₈		
Silica (Quartz)	SiO ₂		
Soda feldspar (Albite)	NaAlSi ₃ O ₄		
Whiting (Calcite)	CaCO ₃		
Wollastonite	CaSiO ₃		
Zircopax (Zircon)	ZrSiO ₄		
Colorant Oxides			
Cobalt	Со		
Copper carbonate	CuCO ₃		
Hematite	Fe ₂ O ₃		
Rutile	TiO ₂		

Department Environmental, Earth, & Atmospheric Sciences

Gamma ray spectrum for Ceramic 6

