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Abstract

Total internal partition sums (TIPS) are calculated for all molecular species in the 2000 HITRAN database.  In addition, the TIPS for 13 other isotopomers/isotopologues of ozone and carbon dioxide are presented.  The calculations address the corrections suggested by Goldman et al. (JQSRT 2000;66:455-86).  The calculations consider the temperature range 70-3000 K to be applicable to a variety of remote sensing needs.  The method of calculation for each molecular species is stated and comparisons with data from the literature are discussed.  A new method of recall for the partition sums, Lagrange 4-point interpolation, is developed.  This method, unlike previous versions of the TIPS code, allows all molecular species to be considered.  
1.  Overview


The aim of this work has been to provide a comprehensive set of total internal partition sums (TIPS) for species of atmospheric interest, calculated to the greatest possible degree of accuracy and packaged in a form which allows for easy and rapid recall of the data.  This work is therefore a modern revision of previous calculations which supplants previously released partition function data.  As such, the work is based upon prior work by Gamache et al. [1, 2] and incorporates all of the corrections discussed in Goldman et al. [3], as well as newer physical constants and molecular parameters.


Given that partition functions are most commonly used by those interested in remote sensing, these partition functions are provided to augment the HITRAN 2000 spectroscopic database [4].  Therefore, the scope of the calculations matches these interests.  Partition functions are provided for all molecular species and isotopomers present on the 2000 edition of the HITRAN database, except for the O atom, for which rotational and vibrational partition functions are undefined.  Additionally, partition functions are provided for a number of ozone isotopologues/isotopomers which are not currently on the HITRAN database and one isotopologue of carbon dioxide.  The temperature range of the calculations (70-3000K) was selected to match a variety of remote sensing needs (planetary atmospheres, combustion gases, plume detection, etc.).  Although there are a number of molecular species for which the partition sum at high temperatures is of no practical importance, e.g. ozone, hydrogen peroxide, the aim was to have a consistent set of partition sums for all molecular species.
2.  Methodology


The general methodology used in this study was selected to minimize the possibility of human error or faulty constants producing error in the final partition sums.  Molecular constants used were taken from scientific literature.  The total internal partition sum is given by a sum over all states, s, labeled by the electronic, vibrational, rotational, torsional, ( structure of the molecule,
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where di is the state-independent degeneracy factor and ds is the state-dependent degeneracy factor (see below and [2]) and Es is the energy of the electronic, vibrational, rotational, torsional, ( state.  In practice, the energy states are usually not known for all rotational levels of all vibrational states of all electronic states.  When there are other complications, such as lambda doubling, torsional motion, etc. the situation for the energy states is worse.  In such cases it is assumed that 
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from which the product approximation can be made
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The problem is now reduced to calculating the electronic, vibrational, rotational, ( partition sums.  Which approach is used is determined by the availability of energy states for the molecule in question.

For the rotational partition sums, when possible, rotational energy levels were calculated from molecular constants using appropriate expressions and compared to measured energy levels.  For certain species, energy levels were provided by other researchers.  These energy levels were then used to evaluate the rotational partition sum at a variety of temperatures by direct summation of the expression:
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where dr is the degeneracy of the rotational state with energy Er.  This sum clearly becomes incomplete at high enough temperatures for a given set of energies.  Therefore, the convergence of these partition sums was tested by plotting Qrot(T, J) versus the rotational quantum number J at various temperatures of interest.  Converged partition sums exhibit a horizontal asymptote at energy levels where Er is significantly larger than kT cease to contribute significantly to the sum.  Incomplete partition sums do not exhibit this asymptote.  By finding the greatest temperature at which these plots still exhibited an asymptote, it was possible to determine the highest temperature to which a direct sum could be used for a given set of energies.  Figure 1 is a convergence plot for the 16O3 species.  The general trend of all convergence plots is similar to this graph.  For a given temperature, lower rotational energy levels contribute significantly more to the partition sum, due to the 
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 term.  At a constant temperature, as higher rotational levels are summed, they contribute less and less to the total internal partition function and a horizontal asymptote is seen in the graph.  However, at higher temperatures, it is impossible to reach this point with a finite set of rotational energy levels.  The highest temperature at which the graph still exhibits a horizontal asymptote (i.e. the point where summation of all higher energy levels leads to a negligible change in the total value of the partition sum) is the highest temperature at which the partition sum remains converged.

Next, when necessary, an appropriate analytical expression was used to evaluate Qrot(T).  The expression used was selected based on molecular symmetry.  For linear molecules, McDowell’s expression was used [5]; for asymmetric rotors, Watson’s expression was used [6], for spherical [7] and symmetric top molecules [8], McDowell’s expressions were used.


A comparison was then performed between the direct sum and the analytical expression for each species.  Bearing in mind that the direct sum is only accurate at temperatures low enough for it to remain converged and that all of the analytical expressions used are approximations which become better in the limit of high temperatures, the assumption was made that if a good agreement can be demonstrated between a converged direct sum and an analytical expression for a fair temperature range, that the analytical expression probably exhibits similar or smaller errors at higher temperatures.  In all cases, a good agreement could be demonstrated between the two methods and, in most cases, the analytical expression was used for the entire temperature range.  For certain species where the analytical expression did not work as well for lower temperatures, the direct sum was used for low temperatures and an analytical expression was used for higher temperatures.


For all species, unless otherwise noted, the vibrational partition function was calculated using the harmonic oscillator approximation (HOA) of Herzberg [9].  Vibrational fundamentals were taken from the literature and used in the following expression:
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Once the vibrational and rotational partition functions were calculated for species in the electronic ground state and with no other structure (hyperfine, torsion, …), the product approximation, Qvib x Qrot, was used to evaluate the total internal partition functions.  The product approximation assumes that the vibrational and rotational energy levels are totally independent of each other and therefore, that the rotational and vibrational partition functions are also totally independent.  With this approximation, the total internal partition function, for most molecules, is merely the product of the rotational and vibrational partition functions.  The validity of the product approximation was tested in a rough manner by comparing the total internal partition function for CO2 calculated by using the product approximation with an analytical expression with a partition function calculated by a direct sum of ro-vibrational energy levels.  The results of this test are summarized in Fig. 2.


One often neglected aspect of calculating partition sums is the inclusion of state independent degeneracy factors.  Degeneracy factors can be divided into state dependent and state independent components.  Note, below when the state dependent degeneracy factors are discussed here it is the factor in addition to the normal (2J+1) of the (2F+1) factor. These additional state dependent degeneracy factors occur in systems in which the rotational wavefunction of the species couple with the nuclear wavefunctions of some of the atoms in the molecule.  Typically, this happens in species with some degree of symmetry where only certain products of rotational and nuclear wavefunctions yield the proper symmetry for the complete wavefunctions.  The net result of this is that for some molecules, even and odd symmetry states have different weights and these values must be factored in accordingly when calculating partition sums.


For molecules where two identical nuclei are exchanged upon rotation, it is easy to determine the nuclear statistical weights which are part of the state dependent degeneracy factors.  For Fermi systems (i.e. molecules where the exchanged nuclei have half-integer spins) and Bose systems (i.e. molecules where the exchanged nuclei have integer spins) the following equations give the state dependent degeneracy factors:
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where Ix is the nuclear spin of the atoms which are interchanged.  For example, for H2O, the two interchanged nuclei are the hydrogen atoms, which are spin ½.  Inserting this value into the above equations gives a three-fold degeneracy for the odd states and a one-fold degeneracy for the even states.  For 16O3, the two interchanged nuclei are oxygen atoms with spin zero.  Substituting this value into the above equations yields a one-fold degeneracy for the even levels and a zero-fold degeneracy for the odd levels (i.e., such levels do not exist).  For molecules which have more than one pair of atoms exchanged upon rotation, expressions for the number of spin functions for each state are given in Ref. 9, p17, Eqs. (I,8) and (I,9).

When direct sums were calculated in this work, state dependent factors were handled explicitly by calculating the parity of each state using an expression appropriate for the molecular symmetry of the species involved and the correct degeneracy factors were incorporated into the direct sum.  When analytical expressions were used, an average state dependent factor was used by taking the arithmetic mean of the state dependent factors involved.  For example, for 16O3, a factor of 0.5 was used to account for the average of the state dependent factors.


State independent factors are often omitted from partition sum calculations.  They are, however, necessary for the partition functions to relate to thermodynamic quantities.  State independent factors occur in molecules where there are atoms with non-zero nuclear spins that are not interchanged upon rotation.  This degeneracy factor is expressed as 
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, where I is the nuclear spin and the product is taken over all nuclei not interchanged by rotation. [9]  Note, there are other factors that can sometimes mimic state independent factors, for example a doubling for all levels when there is lambda doubling, torsion or inversion.  These factors are discussed specifically in the appropriate sections of the text.


Although the state independent factors are often omitted in studies which report partition sums, it is usually not a problem, since the actual values of the partition sum are infrequently used.  More commonly, a ratio of partition sums is employed and the state independent factors cancel out.  However, in this study, every attempt has been made to include the complete state independent factor for all species and hence determine the true total internal partition function.  In comparing the partition sums from this study to others from the literature, it is sometimes necessary to multiply by an integer value to obtain agreement due to the omission of the state-independent factors in other studies.  Such comparisons are discussed specifically in the text.

3.  Calculations

The calculations of the total internal partition sums were made employing a number of methodologies depending on the molecular species in question.  Here, the calculations are summarized.  Reference 10 gives complete details of the calculations including the rotational and vibrational constants used, the state-independent and state-dependent statistical factors, complications that arise due to hyperfine structure, lambda doubling, spin coupling, (, comparisons of the direct sum and analytical calculations, and the accuracy of the recall of the calculated values.  In addition, the analytical models for Qrot that were developed are presented in Ref. 10.  

Because of the temperature range of the study, 70-3000 K, it was necessary to make most of the calculations via the product approximation and determine Qrot via analytical models and Qvib via the harmonic oscillator approximation of Herzberg.  There were a small number of species where the direct sum over energy states yields the TIPS.  These include the isotopologues of oxygen molecule and the isotopologues of the hydrogen halides.  For the isotopologues of OH and PH3 the product approximation, Qvibx Qrot, was used where Qrot was determined by direct summation.  For OH the rotational energy levels were produced using the method of Beaudet and Poynter [11], which includes fine structure interaction and lambda doubling.


The TIPS for all isotopologues/isotopomers of the following asymmetric rotors on the HITRAN database: O3, SO2, NO2, HNO3, H2CO, HOCl, COF2, H2S, HCOOH, HO2, ClONO2, HOBr, and C2H4, were determined by the product approximation, Qvib x Qrot, where Qrot was determined by the analytical formula of Watson [6].  For NO2 there were corrections for electron spin and hyperfine Fermi resonance (see Perrin et al. [12]) and the analytical model for HO2 included an additional statistical factor of 2 in order to account for the F-splittings due to ESR present in this open shell molecule.

For water vapor, a light asymmetric rotor, comparisons were made between the Qrot determined by direct sum and by using Watson’s analytical model.  Figure 3 shows the difference between the direct sum and the analytical expression for the H216O species for the temperature range 50-3000 K.  The figure shows that the difference between the two methods is large at low temperature, where the analytical expression is unable to properly model the quantum structure of the system.  The difference is also quite large at high temperatures, where the direct sum is incomplete.  However, at intermediate temperatures, there is a region where the agreement between the two methods is quite good.  In order to provide the most accurate representation of the partition sum, a combination of the direct sum and the analytical expression was used for Qrot in the final product approximation partition sums for the four most abundant species.  In part, this method was selected because the greatest errors for all of these species occurred at low temperatures.  The lowest temperatures at which the analytical expression was used were 1401 K, 451 K, 349 K and 675K for H216O, H218O, H217O, HD16O respectively.  At these temperatures, the differences between the direct sum and the analytical expression were 0.62%, 0.52%, -0.46% and 0.66% for H216O, H218O, H217O, HD16O, respectively.  For HD18O and HD17O the product approximation with Watson’s analytical model for Qrot was used throughout the entire temperature range.

The product approximation, Qvib x Qrot, with McDowell’s model [5] was used for all isotopologues of the following linear molecules on the database: CO2, N2O, CO, OCS, N2, HCN, C2H2, and NO+.

The TIPS for isotopologues of the symmetric top molecules on the database; CH3D, NH3, CH3Cl, and C2H6, were calculated using the product approximation, Qvib x Qrot, with Qrot determined via the analytical formula of McDowell [8].  For 12CH4, 13CH4, and SF6 the product approximation was used with Qrot determined by McDowell’s spherical top formula [7].

For the doublet-pi molecular species of NO and ClO, which have spin-orbit, lambda doubling and hyperfine interactions (see Ref. 3 for details) the product approximation, Qvib x Qrot, was used.  An analytical formula, based on the linear molecule formula of McDowell [5], was developed.   Factors of 3, 3, and 2 for the hyperfine structure and 2, 2, and 2, for the lambda doubling structure were incorporated into the analytical partition sums for 14N16O, 14N18O, and 15N16O, respectively.  For both isotopomers of ClO, the analytical partition sums were multiplied by 4 to account for the hyperfine structure and 2 to account for the lambda doubling.  

An analytical model for the rotational partition sum, which accounts for torsion in hydrogen peroxide, was developed using a number of approximations.  A discussion of the complexity of this system is given by Goldman et al. [3].  It might appear at first that a simple doubling of the rotational levels by the tunneling through the low trans barrier would give a useful approximation to the partition function.  This is not sufficient because the tunneling induces a splitting which increases from ~11 cm-1 (for n=0) to ~106.3 cm-1 (n=1), to ~206 cm-1 (n=2) etc. and the rotational constants (A, B, C, K, etc.) vary significantly from one torsional state to another.  For each rotational state, the energies for the torsional states are labeled by n.  The analytical model developed considered all states up to n = 7 and is based on Watson’s analytical formula [6].  Vibrational partition sums were calculated using only the 5 “low amplitude modes, 1, 2, 3, (Ags symmetry) and the 5, 6 (Bus symmetry), 3580. cm-1, 1395.8 cm-1, 865.939 37 cm-1, 3780. cm-1, and 1264.584 17 cm-1, respectively, as suggested by the studies of Refs. 13-16.   The exact value of Q(T) calculated by direct sum at 296K is 9851.664 73.  The analytical model developed here gives 9819.750 19, a 0.3% difference.

Table 1 presents the total internal partition sum at 296 K for the species considered in this work.  Also given in the table are the state-independent statistical factors, which are often needed when comparing with values from the literature. 

Comparisons were made with data taken from the literature for at least the principal isotopologue of each molecule except HI and NO+ for which no literature values were found.  In total there are 98 comparisons made.  For cases where the literature values are only for the rotational partition sum, the literature value is multiplied by the vibrational partition sum (product approximation) in order to compare with the TIPS calculated in this work.  Most of the comparisons show very good agreement: the percent difference, 100*(Qliterature-Qthis work)/Qliterature, for 83 comparisons are less than 1 percent, 14 are between 1 and 2 percent, and one is 4.75%.  The last comparison, for C2H6 at 300 K, demonstrates the need to add anharmonic corrections for torsion in ethane to our calculations.  This is currently being pursued.  The comparisons are presented in Ref. 10.
4.  Recall of Data


Although some compilations of partition functions [1, 2. 17, 18] utilized a four- or five-coefficient polynomial fit to the Q(T) data and provided the coefficients as a means of rapid recall, this work has abandoned that concept in favor of interpolation.  

The reasons for this transition are numerous.  First, as available computer power and storage space constantly increase, it is no longer necessary to provide final data in the most terse manner possible.  The entire set of tables as an uncompressed, fixed format file occupies only a few megabytes of storage space, and although the interpolation routines require somewhat more computer time than the polynomial expansion, both methods are nearly instantaneous in modern terms.  


Second, when polynomial fits were used, there were a number of species for which the error introduced by the fits was greater than the 1% criterion at certain temperatures.  Studies revealed that systems with many low lying vibrational states gave vibrational partition sums that increase rapidly.  When the product with the rotational partition sum is made the resulting total internal partition sum increases too rapidly to fit accurately by the polynomial in the chosen temperature ranges.  With interpolation of Q(T) data the situation is improved.  The values produced by interpolation are, in general, much closer to the calculated values than those produced by polynomial expansion.  Fig. 4 shows the error introduced by using interpolation with a step size of 50 K for nitric acid.  Nitric acid was selected for this study because its partition function is difficult species to fit by a polynomial function.  As evidenced by these graphs, a step size of 50K is more than satisfactory, even for a species which is troublesome to fit.


A third reason for the switch to interpolation is that it presents the data in the most direct form possible.  By looking at the tables, or using them as input data to a graphing program, it is possible to immediately see trends in the partition functions.  Also, since the actual numbers are provided, rather than coefficients which are not directly meaningful, there is a much smaller chance of the wrong values being used in a calculation, or the accidental switching of two coefficients for example.  


As part of this work, various interpolation schemes were considered.  Since partition functions have a rather exponential trend, the concept of storing either ln(Q(T)) versus T or ln(Q(T)) versus ln(T) was tested for the efficacy of reducing interpolation errors.  Three schemes were tested; 4-point Lagrange interpolation of Q(T) versus T, ln{Q(T)} versus T, and ln{Q(T)} versus ln{T}.  Figure 5 shows the percent difference (calculated-interpolated) for the three schemes with 50 K Temperature step for nitric acid.  From the plot it is clear that the Q(T) versus T and ln{Q(T)} versus ln{T} interpolations are more precise than the ln{Q(T)} versus T interpolation.  Fig. 6 shows the maximum error at all points within the temperature range of interest for nitric acid, for the Q(T) versus T and ln{Q(T)} versus ln{T} interpolations as a function of the spacing between temperature points.  As Fig. 6 shows, although taking the logarithm of both axes significantly reduces the maximum error at large step-size values, it does little, or even increases the error at smaller step-size values.  Additionally, providing tables of ln(Q(T)) versus ln(T) still makes it difficult to examine the data without performing further calculations.  In light of all of these findings, and a critical analysis of the size of the tables required versus induced error, the decision was made to use interpolation with a 25K step size and no logarithms.


Data tables were generated that list values for Q(T) at 25K intervals.  A four-point Lagrange interpolation scheme is used, with extra points provided below 70K and above 3000K so that a four point interpolation can be used throughout the entire temperature range.  These tables and the four-point Lagrange interpolation scheme were then coded into a FORTRAN program (TIPS_2003.for) and subroutine (BD_TIPS_2003.for) and are available from one of the authors (RRG, see faculty.uml.edu/Robert_Gamache) or the HITRAN ftp site (cfa-ftp.harvard.edu/pub/HITRAN).

5.  Discussion


The partition sums calculated above include all isotopologues/isotopomers on the HITRAN database as well as some isotopologues/isotopomers not currently on the database.  The partition sums are provided in tabular form with a 25K step size, accompanied by a Lagrange interpolation program to evaluate the partition sums at any temperature within the temperature range of this study.  The conversion to an interpolation scheme has allowed for the inclusion of a number of partition sums which were previously undistributed because they could not be fit with a suitable degree of accuracy by the polynomial expression used at that time.


Although this work is similar to previously released partition functions, it also includes many new species, several new analytical models, interpolation for greater accuracy, and incorporates all of the corrections to the previous set of partition functions discussed in Goldman et al. [3]  There are a number of improvements that will be made to the partition sums in the future.  For molecular systems where it is necessary to use the product approximation this work only included the harmonic oscillator approximation of Herzberg [9].  Anharmonic corrections will be added to the model for ethane.  The analytical approximation of the rotational partition sum for asymmetric rotors [19] includes a component for centrifugal distortion that was not applied in this work.  
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Tables

Table 1.
Total Internal Partition Sums at 296 K for Molecular Species on the HITRAN Database
	Molecule
	ISO

Code†
	Qtot(296K)
	di
	
	Molecule
	ISO

Code†
	Qtot(296K)
	di

	H2O
	161
	1.7464x 102
	1
	
	SO2
	626
	6.3403x 103
	1

	
	181
	1.7511x 102
	1
	
	
	646
	6.3689x 103
	1

	
	171
	1.0479x 103
	6
	
	NO2
	646
	1.3578x 104
	3

	
	162
	8.5901x 102
	6
	
	NH3
	4111
	1.7252x 103
	3

	
	182
	8.7519x 102
	6
	
	
	5111
	1.1527x 103
	2

	
	172
	5.2204x 103
	36
	
	HNO3
	146
	2.1412x 105
	6

	CO2
	626
	2.8694x 102
	1
	
	OH
	61
	8.0362x 101
	2

	
	636
	5.7841x 102
	2
	
	
	81
	8.0882x 101
	2

	
	628
	6.0948x 102
	1
	
	
	62
	2.0931x 102
	3

	
	627
	3.5527x 103
	6
	
	HF
	19
	4.1466x 101
	4

	
	638
	1.2291x 103
	2
	
	HCl
	15
	1.6066x 102
	8

	
	637
	7.1629x 103
	12
	
	
	17
	1.6089x 102
	8

	
	828
	3.2421x 102
	1
	
	HBr
	19
	2.0018x 102
	8

	
	728
	3.7764x 103
	6
	
	
	11
	2.0024x 102
	8

	
	727
	1.1002x 104
	1
	
	HI
	17
	3.8900x 102
	12

	O3
	666
	3.4838x 103
	1
	
	ClO
	56
	3.2746x 103
	4

	
	668
	7.4657x 103
	1
	
	
	76
	3.3323x 103
	4

	
	686
	3.6471x 103
	1
	
	OCS
	622
	1.2210x 103
	1

	
	667
	4.3331x 104
	6
	
	
	624
	1.2535x 103
	1

	
	676
	2.1405x 104
	6
	
	
	632
	2.4842x 103
	2

	
	886
	7.8232x 103
	1
	
	
	623
	4.9501x 103
	4

	
	868
	4.0063x 103
	1
	
	
	822
	1.3137x 103
	1

	
	678
	4.5896x 104
	6
	
	H2CO
	126
	2.8467x 103
	1

	
	768
	4.6468x 104
	6
	
	
	136
	5.8376x 103
	2

	
	786
	4.5388x 104
	6
	
	
	128
	2.9864x 103
	1

	
	776
	2.6630x 105
	36
	
	HOCl
	165
	1.9274x 104
	8

	
	767
	1.3480x 105
	1
	
	
	167
	1.9616x 104
	8

	
	888
	4.2015x 103
	1
	
	N2
	44
	4.6598x 102
	1

	
	887
	4.8688x 104
	6
	
	HCN
	124
	8.9529x 102
	6

	
	878
	2.4640x 104
	6
	
	
	134
	1.8403x 103
	12

	
	778
	2.8573x 105
	36
	
	
	125
	6.2141x 102
	4

	
	787
	1.4126x 105
	1
	
	CH3Cl
	215
	1.1583x 105
	8

	
	777
	8.2864x 105
	6
	
	
	217
	1.1767x 105
	8

	N2O
	446
	5.0018x 103
	9
	
	H2O2
	1661
	9.8198x 103
	1

	
	456
	3.3619x 103
	6
	
	C2H2
	1221
	4.1403x 102
	1

	
	546
	3.4586x 103
	6
	
	
	1231
	1.6562x 103
	8

	
	448
	5.3147x 103
	9
	
	C2H6
	1221
	7.0780x 104
	1

	
	447
	3.0971x 104
	54
	
	PH3
	1111
	3.2486x 103
	2

	CO
	26
	1.0712x 102
	1
	
	COF2
	269
	7.0044x 104
	1

	
	36
	2.2408x 102
	2
	
	SF6
	29
	1.6233x 106
	1

	
	28
	1.1247x 102
	1
	
	H2S
	121
	5.0307x 102
	1

	
	27
	6.5934x 102
	6
	
	
	141
	5.0435x 102
	1

	
	38
	2.3582x 102
	2
	
	
	131
	2.0149x 103
	4

	
	37
	1.3809x 103
	12
	
	HCOOH
	126
	3.9133x 104
	4

	CH4
	211
	5.9045x 102
	1
	
	HO2
	166
	4.3004x 103
	2

	
	311
	1.1808x 103
	2
	
	ClONO2
	5646
	4.7884x 106
	12

	
	212
	4.7750x 103
	3
	
	
	7646
	4.9102x 106
	12

	O2
	66
	2.1577x 102
	1
	
	NO+
	46
	3.1168x 102
	3

	
	68
	4.5230x 102
	1
	
	HOBr
	169
	2.8339x 104
	8

	
	67
	2.6406x 103
	6
	
	
	161
	2.8238x 104
	8

	NO
	46
	1.1421x 103
	3
	
	C2H4
	221
	1.1041x 104
	1

	
	56
	7.8926x 102
	2
	
	
	231
	4.5197x 104
	2

	
	48
	1.2045x 103
	3
	
	
	
	
	


†HITRAN isotopomer code

Figures


1
Convergence of the partition sum as a function of temperature for 16O3.


2
Comparison of the product approximation, Qvib*Qrot, with QDirect Sum for 12C16O2.


3
Percent difference between QDirect Sum and Qanalytical formula for H216O.


4
Error in recalculated Q(T) by interpolation with 50 K step size for nitric acid.


5
Error in recalculated Q(T) by different interpolation schemes with 25 K step size for nitric acid. a) Q vs. T, b) ln{Q} vs. T, and c) ln{Q} vs. ln{T}.


6
Error versus temperature step size in interpolation for Q(T) vs. T (solid circles) and ln{Q(T)} vs. ln{T} (triangles) for nitric acid.
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