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Abstract 

 Total internal partition sums (TIPS) are calculated for all molecular species in the 

2000 HITRAN database.  In addition, the TIPS for 13 other isotopomers/isotopologues of 

ozone and carbon dioxide are presented.  The calculations address the corrections 

suggested by Goldman et al. (J. Quant. Spectrosc. Radiat. Transfer 66 (2000) 455).  The 

calculations consider the temperature range 70-3000 K to be applicable to a variety of 

remote sensing needs.  The method of calculation for each molecular species is stated and 

comparisons with data from the literature are made whenever possible.  A new method of 

recall for the partition sums, Lagrange 4-point interpolation, is developed.  This method, 

unlike previous versions of the TIPS code, allows all molecular species to be considered.  

Convergence of the partition sums as a function of temperature, analytical modeling of 

the rotational partition sum, and the quality of the recalculated quantities are discussed. 

 

 



 

Overview 

 The aim of this work has been to provide a comprehensive set of total internal 

partition sums (TIPS) for species of atmospheric interest, calculated to the greatest 

possible degree of accuracy and packaged in a form that allows for easy and rapid recall 

of the data.  This work is therefore a modern revision of previous calculations which 

supplants previously released partition function data.  As such, the work is based upon 

prior work by Gamache et al. [1,2] and incorporates all of the corrections discussed in 

Goldman et al. [3], as well as newer physical constants and molecular parameters. 

 Since one of the many uses of the partition is for application to retrievals from 

remotely sensed data, these partition functions are provided as a companion to the 

HITRAN 2000 spectroscopic database [4].  Therefore, the scope of the calculations 

matches these interests.  Partition functions are provided for all molecular species and 

isotopomers present on the HITRAN database, except for the O atom, for which 

rotational and vibrational partition functions are undefined.  Additionally, partition 

functions are provided for a number of ozone species which are not currently on the 

HITRAN database.  The temperature range of the calculations (70-3000K) was selected 

to match a variety of remote sensing needs (planetary atmospheres, combustion gases, 

plume detection, etc.).  Although there are a number of molecular species for which the 

partition sum at high temperatures is of no practical importance at present, e.g. ozone, 

hydrogen peroxide, the aim was to have a consistent set of partition sums for all 

molecular species. 

 



Methodology 

 The general methodology used in this study was selected to minimize the 

possibility of human error or faulty constants producing error in the final partition sums.  

Molecular constants used were taken from scientific literature.  The total internal 

partition sum is given by a sum over all states, s, labeled by the electronic, vibrational, 

rotational, torsional, … structure of the molecule, 
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where di is the state-independent degeneracy factor and ds is the state-dependent 

degeneracy factor (see below and [2]) and Es is the energy of the electronic, vibrational, 

rotational, torsional, etc. state.  In practice, the energy states are usually not known for all 

rotational levels of all vibrational states of all electronic states.  When there are other 

complications, such as lamda doubling, torsional motion, etc. the situation for the energy 

states is more complex.  In such cases it is assumed that  
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from which the product approximation can be made 
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The problem is now reduced to calculating the electronic, vibrational, rotational, … 

partition sums.  Which approach is used is determined by the availability of energy states 

for the molecule in question. 

 For the rotational partition sums, when possible, rotational energy levels were 

calculated from these constants using appropriate expressions and compared to measured 

energy levels.  For certain species, energy levels were provided by other researchers.  

These energy levels were then used to evaluate the rotational partition sum at a variety of 

temperatures by direct summation of the expression: 
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where dr is the degeneracy of the rotational state with energy Er.  This sum clearly 

becomes divergent at high enough temperatures for a given set of energies.  Therefore, 

the convergence of these partition sums was tested by plotting Qrot(T, J) versus the 

rotational quantum number J at various temperatures of interest.  Converged partition 

sums exhibit a horizontal asymptote at energy levels where Er is significantly larger than 

kT cease to contribute significantly to the sum.  Non-converged partition sums do not 

exhibit this asymptote.  By finding the greatest temperature at which these convergence 

plots still exhibited an asymptote, it was possible to determine the highest temperature to 

which a direct sum could be used for a given set of energies. 



 Next, an appropriate analytical expression was used to evaluate Qrot(T).  The 

expression used was selected based on molecular symmetry.  For linear molecules, 

McDowell’s expression was used [5]; for asymmetric rotors, Watson’s expression was 

used [6] and for spherical [7, 8] and symmetric top molecules [9], McDowell’s 

expressions were used. 

 A comparison was then performed between the direct sum and the analytical 

expression for each species.  Bearing in mind that the direct sum is only accurate at 

temperatures low enough for it to remain converged and that all of the analytical 

expressions used are approximations which become better in the limit of high 

temperatures, the assumption was made that if a good agreement can be demonstrated 

between a converged direct sum and an analytical expression for a fair temperature range, 

that the analytical expression probably exhibits similar or smaller errors at greater 

temperatures.  In all cases, a good agreement could be demonstrated between the two 

methods and, in most cases, the analytical expression was used for the entire temperature 

range.  For certain species where the analytical expression did not work as well for lower 

temperatures, the direct sum was used for low temperatures and an analytical expression 

was used for higher temperatures. 

 For all species, unless otherwise noted, the vibrational partition function was 

calculated using the harmonic oscillator approximation of Herzberg [10].  Vibrational 

fundamentals were taken from the literature and used in the following expression: 
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 Once the vibrational and rotational partition functions were calculated for species 

in the electronic ground state and with no other structure (hyperfine, torsion, …), the 

product approximation, Qvib x Qrot, was used to evaluate the total internal partition 

functions.  The product approximation assumes that the vibrational and rotational energy 

levels are totally independent of each other and therefore, that the rotational and 

vibrational partition functions are also totally independent.  With this approximation, the 

total internal partition function, for most molecules, is merely the product of the 

rotational and vibrational partition functions.  The validity of the product approximation 

was tested in a rough manner by comparing the total internal partition function for CO2 

calculated by using the product approximation with an analytical expression with a 

partition function calculated by a direct sum of ro-vibrational energy levels.  The results 

of this test are summarized in Fig. 1. 

 One often neglected aspect of calculating partition sums is the inclusion of state 

independent degeneracy factors.  Degeneracy factors can be divided into state dependent 

and state independent components.  Note, below, when the state dependent degeneracy 

factors are discussed here it is the factor in addition to the normal (2J+1) or the (2F+1) 

factor. These additional state dependent degeneracy factors occur in systems in which the 

rotational wavefunction of the species couples with the nuclear wavefunctions of some of 

the atoms in the molecule.  Typically, this happens in species with some degree of 

symmetry where only certain products of rotational and nuclear wavefunctions yield the 

proper symmetry for the complete wavefunctions.  The net result of this is that for some 



molecules, even and odd symmetry states have different weights and these values must be 

factored in accordingly when calculating partition sums. 

 For molecules where two identical nuclei are exchanged upon rotation, it is easy 

to determine the nuclear statistical weights which are part of the state dependent 

degeneracy factors.  For Fermi systems (i.e. molecules where the exchanged nuclei have 

half-integer spins) and Bose systems (i.e. molecules where the exchanged nuclei have 

integer spins) the following equations give the state dependent degeneracy factors: 
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where Ix is the nuclear spin of the atoms which are interchanged.  For example, for H2O, 

the two interchanged nuclei are the hydrogen atoms, which are spin ½.  Inserting this 

value into the above equations gives a three-fold degeneracy for the odd states and a one-

fold degeneracy for the even states.  For 16O3, the two interchanged nuclei are oxygen 

atoms with spin zero.  Substituting this value into the above equations yields a one-fold 

degeneracy for the even levels and a zero-fold degeneracy for the odd levels (i.e., such 

levels do not exist).  For molecules which have more than one pair of atoms exchanged 

upon rotation, expressions for the number of spin functions for each state are given in 

Ref. 10, p17, Eqs. (I.8) and (I.9). 



 When direct sums were calculated in this work, state dependent factors were 

handled explicitly by calculating the parity of each state using an expression appropriate 

for the molecular symmetry of the species involved and the correct degeneracy factors 

were incorporated into the direct sum.  When analytical expressions were used, an 

average state dependent factor was used by taking the arithmetic mean of the state 

dependent factors involved.  For example, for 16O3, a factor of 0.5 was used to account 

for the total of the state dependent factors. 

 State independent factors are often omitted from partition sum calculations.  They 

are, however, necessary for the partition functions to relate to thermodynamic quantities.  

State independent factors occur in species where there are atoms which have non-zero 

spins and which are not interchanged upon rotation.  This degeneracy factor is expressed 

as ∏ + )12( I , where I is the nuclear spin and the product is taken over all nuclei not 

interchanged by rotation. [10]  Note, there are other factors that can sometimes mimic 

state independent factors, for example a doubling for all levels when there is lambda 

doubling, torsion or inversion.  These factors are discussed specifically in the appropriate 

sections of the text. 

 Although the state independent factors are often omitted in studies which report 

partition sums, it is usually not a problem, since the actual values of the partition sum are 

infrequently used.  More commonly, a ratio of partition sums is used.  This causes the 

state independent factors to cancel out.  However, in this study, every attempt has been 

made to include the complete state independent factor for all species and hence determine 

the true total internal partition function.  In comparing the partition sums from this study 

to others from the literature, it is sometimes necessary to multiply by an integer value to 



obtain agreement due to the omission of certain factors in other studies.  Such 

comparisons are discussed specifically in the text. 

 

CALCULATIONS  

 

H2O 

 Six isotopomers of H2O were considered in this study: H2
16O, H2

18O, H2
17O, 

HD16O, HD18O and HD17O.  For the principal species, the rotational energy levels are 

those of Coudert [11].  In all other cases, rotational energy levels were calculated by 

diagonalizing the Watson Hamiltonian [12] with appropriate constants [13].  The state 

independent factors contributing to the partition function were 1, 1, 6, 6, 6 and 36 for 

H2
16O, H2

18O, H2
17O, HD16O, HD18O and HD17O, respectively.  The state dependent 

factors due to the coupling of the nuclear and rotational wavefunctions were a 3-fold 

weighting for odd states and a 1-fold weighting for even states in those species with C2v 

symmetry (i.e. H2
16O, H2

18O, H2
17O).  The evenness/oddness of the state is determined by 

the parity of (Ka-Kc+nν3), where nν3 is the number of vibrational quanta in the ν3 mode 

(asymmetric stretch).  Direct sums of Qrot converged up to about 900K, 1600K, 1200K, 

1200K, 75K and 75K for H2
16O, H2

18O, H2
17O, HD16O, HD18O and HD17O, respectively. 

 The analytical expression of Qrot used for H2O was that of Watson [6], with the 

constants of Ref. 13.  At points within the temperature range of interest for which the 

direct sum remained converged, the greatest differences between the direct sum and the 

analytical expression were 0.80%, 2.1%, 3.0% and 1.0% for H2
16O, H2

18O, H2
17O, HD16O 

respectively.  Comparisons were not made for the other isotopomers due to the very 



limited number of energy levels available for the direct sum.  Figure 2 shows the 

difference between the direct sum and the analytical expression for the H2
16O species.  

The figure shows that the difference between the two methods is quite large at very low 

temperatures, where the analytical expression is unable to properly model the quantum 

structure of the system.  The difference is also quite large at high temperatures, where the 

direct sum no longer converged.  However, at intermediate temperatures, there is a region 

where the agreement between the two methods is quite good.  In order to provide the 

most accurate representation of the partition sum, a combination of the direct sum and the 

analytical expression was used for the final partition sums for the four most abundant 

species.  In part, this method was selected because the greatest errors for all of these 

species occurred at low temperatures, where the analytical expression could not properly 

model the fine quantum structure of the molecule.  The lowest temperatures at which the 

analytical expression was used were 1401K, 451K, 349K and 674K for H2
16O, H2

18O, 

H2
17O, HD16O respectively.  At these temperatures, the differences between the direct 

sum and the analytical expression were 0.62%, 0.52%, -0.46% and 0.66% for H2
16O, 

H2
18O, H2

17O, HD16O, respectively. 

 The vibrational partition sums were calculated using the vibrational fundamentals 

of Ref. [14] and are presented in Table 1   

 The values of the partition sums calculated for H2O in this study agree quite well 

with calculations from other sources.  For example, for the principal species, we obtained 

values for the rotational partition function of 63.69, 174.56, 178.09 and 294.57 at 150K, 

296K, 300K and 420K.  These values compare well with the values of 63.68, 174.6, 

178.12 and 295.6 from Refs. 15, 16, 15, and 16, respectively.  



 

 

CO2 

 Nine isotopomers of CO2 were considered in this study: 12C16O2, 13C16O2, 

12C16O18O, 12C16O17O, 13C16O18O, 13C16O17O, 12C18O2,12C17O18O, and 12C17O2.  For 

12C16O2, 13C16O2, and 12C16O18O, the energy levels used were those of Rothman et al. 

[17].  For the remaining species, except 12C17O2, the energy levels were calculated using 

the constants of Chedin and Teffo [18].  For 12C17O2 the partition sums were only done 

by analytical formula.  State dependent factors for symmetric species were calculated 

using basic spectroscopic rules, resulting in a 1-fold degeneracy for even levels and a 0-

fold degeneracy for odd levels (i.e., such levels do not exist).  State independent factors 

of 1, 2, 1, 6, 2, 12, 1, 6 and 1 were used for species 12C16O2, 13C16O2, 12C16O18O, 

12C16O17O, 13C16O18O, 13C16O17O, 12C18O2, 12C17O18O, and 12C17O2 respectively.  Direct 

sums, Qrot, converged up to about 1800K, 1300K, 1200K, 600K, 700K, 700K, 500K and 

600K for species 12C16O2, 13C16O2, 12C16O18O, 12C16O17O, 13C16O18O, 13C16O17O, 12C18O2 

and 12C17O18O, respectively. 

 The analytical expression used for CO2 was that of McDowell [5].  The constants 

used for the analytical expression were those of [18].  Comparisons between the direct 

sum and the analytical expression had the greatest differences at points for which the 

direct sum remained converged within the temperature range of interest of 0.49%, 0.34%, 

0.91%, 0.59%, 0.70%, 0.70%, 0.49% and 0.59% for species 12C16O2, 13C16O2, 12C16O18O, 

12C16O17O, 13C16O18O, 13C16O17O, 12C18O2 and 12C17O18O, respectively.  For all species, 

the analytical expression was used throughout the entire temperature range. 



 The vibrational partition sums were calculated using the constants of [18] and are 

given in Table 2.    

 Comparison with other published values shows good agreement.  Our values of 

the total internal partition sum at 300K are 291.89, 588.57, 620.08, 3614.29 and 1250.77 

for 12C16O2, 13C16O2, 12C16O18O, 12C16O17O, 13C16O18O respectively.  These compare 

favorably with the values of Gray and Young [19], which are 291.05, 293.40, 618.41, 

600.65 and 623.58 after factoring in the state independent factors of 1, 2, 1, 6 and 2 

respectively. 

 

 

O3 

 All eighteen isotopomers of ozone are considered in this study.  Rotational energy 

levels were derived using the constants from Flaud et al. [20] for the principal isotopomer 

16O3, Flaud et al. [21] for isotopomers 16O16O18O, 16O18O16O, 18O16O18O, 18O18O16O and 

18O3, Rinsland et al. [22] for isotopomers 16O17O16O and 16O16O17O, and the rotational 

constants of Barbe [23] for all other species.  The state-dependent and state-independent 

degeneracy factors are listed in Table 3.  Direct sums of Qrot converged up to about 

1800K, 500K, 400K, 500K and 500K for species 16O3, 16O16O18O, 16O18O16O, 18O18O16O 

and 18O16O18O respectively.  Figure 3 is a convergence plot for the 16O3 species.  The 

general trend of all convergence plots is similar to this graph.  For a given temperature, 

lower rotational energy levels contribute significantly more to the partition sum, due to 

the 
kTEse /−

 term.  At a constant temperature, as higher rotational levels are summed, 

they contribute less and less to the total internal partition function and a horizontal 



asymptote is seen in the graph.  However, at higher temperatures, it is impossible to reach 

this point with a finite set of rotational energy levels.  The highest temperature at which 

the graph still exhibits a horizontal asymptote (i.e. the point where summation of all 

higher energy levels leads to a negligible change in the total value of the partition sum) is 

the highest temperature at which the partition sum remains converged.  

 
 The analytical expression used for Qrot was that of Watson [6].  The constants 

used for the analytical expression were the same as those used to obtain energy levels as 

given above.  A comparison of the direct sum with the analytical expression revealed that 

the greatest differences at points for which the direct sum remained converged within the 

temperature range of interest were 9.10%, 0.42%, 0.32%, 4.90% and 0.42% for species 

16O3, 16O16O18O, 16O18O16O, 18O18O16O and 18O16O18O respectively.  Comparisons were 

not performed for the other species due to the small number of rotational energy levels 

available.  Partition sums evaluated by analytical expression were used for all species at 

all temperatures. 

 The vibrational fundamentals used for species 16O3, 16O16O18O and 16O18O16O are 

those of Refs. [14, 21, 24, 25], those for species 16O17O16O and 16O16O17O are from Refs. 

[22, 26], while the fundamentals used for all other species are those of Barbe [23].  These 

are presented in Table 4.   

 Partition sums for ozone agree quite well with other calculations.  Recent review 

calculations performed by Flaud (private communication) and cited in Goldman et al. [3] 

give the total internal partition sums for ozone at 296K as 3473, 7385 and 3599 for 

isotopomers 16O3, 16O16O18O and 16O18O16O respectively.  These compare well with our 

values of 3483.71, 7465.67 and 3647.08. 



 

 

N2O 

 Five species of N2O were considered in this study: 14N2
16O, 14N15N16O, 

15N14N16O, 14N2
18O and 14N2

17O.  Rotational energy levels were derived using the 

constants of Toth [27].  Because of its symmetry, there are no state dependent degeneracy 

factors for any N2O species.  The state independent factors used were 9, 6, 6, 9 and 54 for 

the species 14N2
16O, 14N15N16O, 15N14N16O, 14N2

18O and 14N2
17O, respectively.  The direct 

sum, Qrot, converged up to about 450K for the principal species. 

 The analytical expression used for Qrot was that of McDowell [5].  The constants 

used for the analytical expression were those of Ref. [27].  The greatest difference 

exhibited between the converged direct sum and the analytical expression within the 

temperature range of interest was about 6.0 %.  The analytical expression was used for 

the entire temperature range for all species. 

 The vibrational fundamentals used to calculate the vibrational partition sum were 

those of Ref. [14] and are presented in Table 5.   

 The partition sum calculated for N2O agrees well with the value reported by 

Young [28], Qrot=564.1 at 300K neglecting the state independent factor of 9 for this 

species, compared with our value for the rotational partition sum of 4497.37 for the 

principal species.  

 

 

CO 



 Six species of CO were considered in this study: 12C16O, 13C16O, 12C18O, 12C17O, 

13C18O and 13C17O.  Energy levels were derived using the Dunham constants of 

Guelachvili et al. [29] and the Yoo constants of Tipping [30].  There are no state 

dependent degeneracy factors for any of these species.  The state independent degeneracy 

factors are 1, 2, 1, 6, 2 and 12 for species 12C16O, 13C16O, 12C18O, 12C17O, 13C18O and 

13C17O, respectively.  Qrot by direct sum converged up to about 1400 K, 1300 K, 1300 K, 

1300 K and 1300 K for species 12C16O, 13C16O, 12C18O, 12C17O and 13C18O respectively. 

 The analytical expression of Qrot was that of McDowell [5].  The rotational 

constants used for the analytical expression were those of Ref. [29].  The greatest 

differences exhibited between the direct sum and the analytical expression for points at 

which the direct sum remained converged in the temperature range of interest were 

approximately 10% for all species.  However, the differences between the two methods 

of calculation remained under 1% until over 600K.  The analytical expression was used 

throughout the entire temperature range for all species. 

 The vibrational partition sum was calculated using the vibrational fundamentals of 

Ref. [29] and are reported in Table 6. 

 The values calculated for the partition sums of CO in this study compare 

favorably with other published values.  For example, the value of the rotational partition 

sum of the principal species at 300K from this study is 107.12, as compared to the value 

of 108.78 from Ref. 15. 

 

 

CH4 



 Three species of methane were considered in this study: 12CH4, 13CH4 and 

12CH3D.  For all three of these species, the rotational partition sums were calculated using 

analytical formulae.  Specifically, McDowell’s formula for symmetric top molecules [9] 

was used for the deuterated species, while McDowell’s formula for spherical top 

molecules [8] was used for the other two species.  The constants used were those of 

Tarrago et al. [31] for species 12CH4, Dang-Nhu et al. [32] for species 13CH4 and Tarrago 

et al. [33] for 12CH3D.   

 For 12CH4 and 13CH4 the state dependent degeneracy factors are 5, 3, and 2 for A, 

F, and E levels.  For 12CH3 D the state dependent degeneracy factors are 2 and 1 for the A 

and E levels [10].  However in the analytical calculations the symmetry number is used, 

which is 4/3, 4/3, and 8/3 for 12CH4, 13CH4, and 12CH3 D, respectively. 

 Vibrational partition sums for all isotopomers were calculated using the 

vibrational fundamentals of the principal isotopomer taken from Norton and Rinsland 

[34], ν1=2917 cm-1, ν2 (doubly degenerate)=1533 cm-1,ν3 (3-fold degenerate)=3019 cm-1, 

and ν4 (3-fold degenerate)=1311 cm-1. 

 The rotational partition sums determined here can be compared with other 

published values.  For example, the Qr(300K) values from this study are 598.65, 1197.22 

and 4841.36 for the 12CH4, 13CH4 and 12CH3D species, respectively.  These may be 

compared with the values of Robiette and Dang-Nhu [35] of 598.6, 598.6 and 1613.8, 

bearing in mind that their values neglect the state independent factors of 1, 2, and 3 for 

12CH4, 13CH4 and 12CH3D species, respectively.  

 

 



O2 

 Three species of molecular oxygen were considered in this study: 16O2, 16O18O 

and 16O17O.  Oxygen is a difficult molecule to model analytically because it has low-

lying electronic states.  Specifically, the ground state of O2 is an −Σ gX 3  state, while the 

molecule also exhibits an ga Δ1  state at approximately 7892 cm-1 and a +Σgb1  state at 

about 13130 cm-1.  These excited states must be included in a proper calculation of Q(T).  

For all species of oxygen considered in this study, direct sums were used throughout the 

entire temperature range.  Assuming that the total energy of any given state is completely 

separable into its electronic, vibrational and rotational parts, the total internal partition 

function is determined by a product approximation formula Eq. 3: 

 Rotational energy levels were calculated for the ground vibrational state of each 

electronic state using the constants of Ref 36.  Different vibrational constants were used 

for each electronic state from Ref 36.  Once a complete set of ro-vibrational energy levels 

was calculated for each electronic state, a direct sum was calculated over this complete 

set of energies.  Convergence tests indicated that these direct sums remained converged 

throughout the entire temperature range of interest.   

 The state independent statistical factors are 1, 1 and 6 for species: 16O2, 16O18O 

and 16O17O respectively.  For a complete description of the state dependent factors see 

Refs. 36, 37.  In the electronic ground state of 16O2, the only allowed rotational wave 

functions are those for odd (antisymmetric) N.  In the a1Δg electronic state, the resultant 

of the individual electron spin is zero (S=0) giving J=N, but the rotational levels are split 

into two, one symmetric (+) and one antisymmetric (-) state, by Λ-doubling.  Because of 

the constraints placed on the wavefunction by Bose-Einstein statistics, only the (+) state 



is allowed and, although all N are occupied, only half the states are realized.  The b1Σ+g 

electronic state also has S=0 giving N=J, and the electronic wavefunction for the Σ+g 

state is symmetric as are Ψnuc and Ψvib.  Thus the only rotational wavefunctions are the 

symmetric (N even) ones.  Because of the symmetry of the 16O2 species and the nuclear 

spin I(16O)=0, half of the rotational states of each electronic level are missing.   

 For the two isotopic species on the database, 16O18O and 16O17O, inversion 

through the center is no longer a valid symmetry operation.  For this condition, all 

rotational levels of the molecule are allowed, both (+) and (-). 

 Values of the partition sum calculated in this study agree quite well with other 

published values.  For the principal species, our values at 294K and 300K are 214.31 and 

218.69, respectively.  These compare favorably with the values of 213.9 and 218.655 

from Refs. 38 and 15, respectively.  A recent study by Schermaul [39] reported that the 

total internal partition sum for 16O18O at 296K was 455.9, while our value was 452.31. 

 

 

NO 

 Three species of NO were considered in this study: 14N16O, 15N16O and 14N18O.  

Rotational energy levels were derived using the constants of Amiot et al. [40] and Meerts 

[41] for the Π1/2 e, Π1/2 f, Π3/2 e and Π3/2 f states.  Direct rotational sums were calculated 

using these energies.  There are no state dependent degeneracy factors for these species.  

The state independent factors are 3, 2 and 3 for species 14N16O, 15N16O and 14N18O 

respectively.  Convergence tests indicated that the direct sums remained converged up to 

about 2000 K, 800 K and 1000 K for species 14N16O, 15N16O and 14N18O respectively. 



 The analytical expression of Qrot used for NO was that of McDowell [5], with the 

same constants given above.  The rotational partition sum can be expressed as a sum over 

all energies of the Π1/2 and Π3/2 states: 
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Since the energies of the Π1/2 and Π3/2 states are separated by a roughly constant value, 

δE, of about 118 wavenumbers, the analytical partition sum can be written as 
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where Qr(analytical) is calculated using the formalism of McDowell. 

 Comparisons between the direct sum and the analytical expression of Qrot showed 

that the greatest differences at temperatures within the range of interest where the direct 

sum remained converged were 1.23% at approximately 118K for species 46 and 48 and 

about 0.75% at 75K for species 56.  However, these differences dropped to about 0.3% 



for all species by 750K.  For all species, an analytical expression was used throughout the 

temperature range. 

 The vibrational partition sum for this species was calculated using the vibrational 

fundamentals of Ref. 2, 1876.0765 cm-1, 1843.020 92 cm-1, 1827.387 16 cm-1, for the 

14N16O, 15N16O, and 14N18O isotopomers, respectively.  The corrections discussed in Ref. 

3 were implemented in calculating the partition sums for this molecule.  Since the 

hyperfine splitting for this species is directly accounted for in the direct sum and handled 

approximately in the analytical expression, it is inappropriate to include the product of 

the spins of the nuclei as a state independent factor.  With these corrections, our value of 

the partition sum for the principal species of NO, 1142.13, agrees very well with the 

value from Goldman et al. [3], 1140.93. 

 

 

SO2 

 Two species of SO2 are considered in this study: 32S16O2 and 34S16O2.  Rotational 

energy levels were calculated using the constants of Pine et al. [42].  Tests indicated that 

the direct sum of Qrot remained converged up to approximately 250K.  The state 

independent statistical factors are 1 for both species.  The state dependent factors are 0-

fold for odd states and 1-fold for even states (i.e. odd states do not exist). 

 The analytical formula used for Qrot was that of Watson [6].  The molecular 

constants used were those of Ref. 42.  A comparison of the direct sum with the analytical 

expression revealed that the greatest difference between the two methods at points in the 

temperature range of interest where the direct sum remained converged was about 0.12%, 



which occurred at 75K.  At 250K, the difference was about 0.006%.  The analytical 

expression was used throughout the temperature range of interest for both species. 

 Vibrational partition sums were calculated for both species using the vibrational 

constants of Lafferty et al. [43], which are 1151.71 cm-1, 517.89 cm-1, and 1362 cm-1 for 

the ν1, ν2, and ν3 fundamentals of 32S16O2 and 1152 cm-1, 518 cm-1, and 1362 cm-1for the 

ν1, ν2, and ν3 fundamentals of  34S16O2.   

 Partition sums calculated for SO2 in this study agree quite well with other 

published values.  For example, recent spectroscopic studies by Lafferty et al. [43, 44] 

and by Chu et al. [45], both give the total internal partition sum for the 32S16O2 species at 

296K as 6345, which compares favorably with our value of 6340.29.  

 

 

NO2 

 One species of NO2 was considered in this study: 14N16O2.  Rotational energy 

levels for direct summation were produced using the formalism of Perrin et al. [46], 

which includes electron spin-rotation and hyperfine Fermi resonances.  The state 

independent degeneracy factor is 3.  The state dependent factors are 0-fold for odd states 

and 1-fold for even states (i.e. odd states do not exist).  Tests indicated that Qrot 

converged up to approximately 150K. 

 Watson’s analytical expression of Qrot [6] was used.  Molecular constants for the 

expression were taken from Perrin et al. [46].  A comparison of the direct sum with the 

analytical expression revealed that the greatest difference between the two methods at 

points within the temperature region of interest for which the direct sum remained 



converged was about 0.37%.  The analytical expression was used throughout the 

temperature range. 

 The vibrational partition function was calculated using the vibrational 

fundamental reported by Norton and Rinsland [34]; 1320 cm-1, 750 cm-1, and 1617  

cm-1 for the ν1, ν2, and, ν3 fundamentals. 

 The total internal partition sum determined in this work at 296K, 13 577.48, 

compares well with that given in Ref. 46, 13 617.9. 

 

 

NH3 

 Two isotopomers of ammonia were considered in this study: 14NH3 and 15NH3.  

Energy levels for direct summation to produce Qrot were created using the constants of 

Poynter and Margolis [47] for the 14NH3 species and Carlotti et al. [48] for the 15NH3 

species.  The direct sum remained converged up to approximately 1800 K for the 14NH3 

species and 1600 K for the 15NH3 species.  The state-independent statistical factors used 

were 3 and 2 for species 14NH3 and 15NH3, respectively.  The state-dependent factor is 4 

for states with K=0 or K equal to a multiple of 3, and is 2 for all other states. 

 The analytical expression of Qrot used for ammonia was that of McDowell [9], 

with the constants from the references cited above.  A comparison of the direct sum with 

the analytical expression in the converged region revealed that the greatest difference 

between the two methods for the 14NH3 species was 0.78% at 75K.  However, at 1800K, 

the difference between the two methods was about 0.13%.  For the 15NH3 species, the 



maximum difference was only about 0.15%.  The analytical expression was used for both 

species throughout the entire temperature range. 

 The vibrational partition function for 14NH3 was calculated using the vibrational 

constants from Norton and Rinsland [34], ν1=3337 cm-1, ν2=950 cm-1, ν3 (2-fold 

degenerate)=3444 cm-1, and ν4 (2-fold degenerate)=1630 cm-1.  For 15NH3 the vibrational 

partition function used the values for 14NH3.   

 The partition functions calculated for ammonia in this study agree well with other 

published data.  For the 14NH3 species, an accurate expression for the partition sum of 

NH3 was derived by Urban et al. [49] and yielded a value of 1731.48 for the total internal 

partition sum at 296K, which compares favorably with our value of 1725.22.  Similarly, 

values of 569.231 and 568.27 were reported by Pine and Dang-Nhu [50] and Aroui [51], 

respectively.  These values neglect the state independent factor arising from the spin of 

the nitrogen atom, so they are a factor of three smaller than the values from this study.  

For the 15NH3 species, our value of 1152.65 compares quite well with the values of Devi 

et al. [52] and the JPL Catalog [15], scaled to 296K, which are  

1153.31 and 575.837.  Note that the JPL value is too small by a factor of two due to 

neglecting the state independent factor from the spin of the nitrogen atom and it also 

omits Qvib, which is 1.0107 at 296 K. 

 

 

HNO3 

 One species of nitric acid is considered in this study: H14N16O3.  The rotational 

partition function was evaluated at all temperatures using the analytical expression of 



Watson [6] and the rotational constants of Maki and Wells [53].  The state independent 

statistical factor was 6.  There are no state dependent statistical factors for this species. 

 The vibrational partition sum was calculated using the vibrational constants from 

Norton and Rinsland [34] and are given in Table 7. 

 Our value of the total internal partition sum at 300K is 214 126.7, which is 

consistent with the value reported by Maki [54] of 27 343 (Qrot) x 1.304 (Qvib) x 6 

([2I(H)+1] x [2I(N)+1]) = 213 931.6. 

 

 

OH 

 Three species of the hydroxyl radical were considered in this study: 16OH, 18OH 

and 16OD.  Rotational energy levels were produced using the method of Beaudet and 

Poynter [55], which includes fine structure interaction and lambda doubling.  These 

energies were calculated for the Π1/2, Π3/2 and Σ1/2 states.  Tests indicated that the direct 

sum remained converged throughout the entire temperature range of interest.  The state 

independent degeneracy factors are 2, 2 and 3 for species 16OH, 18OH, and 16OD 

respectively.  There are no state dependent factors for any of these species.  The direct 

sum was used for Qrot for all of these species throughout the entire temperature range of 

interest. 

 Vibrational partition sums were calculated using the vibrational constants of Ref. 

55; 3569.643 cm-1 for 16OH, 2632.13 cm-1 for 18OH and 16OD used the principal 

isotopologue value.  The corrections discussed in Goldman et al. [3] were implemented in 

calculating the partition sums for this species.  Since the fine structure of the molecule is 



modeled directly in the rotational direct sum, the product of the spins of the nuclei must 

not be included as a state independent factor.  The partition sums from this study compare 

favorably with those of Ref. 3.  For example, for the principal species of OH at 296K, we 

obtained 80.3622, which is quite similar to the value 80.3469 given in Ref. 3. 

 

 

Hydrogen Halides 

 Six species of hydrogen halides are considered in this study: H19F, H35Cl, H37Cl, 

H79Br and H81Br and H127I.  The ro-vibrational energy states of these species are 

calculated using the Dunham formulation and the molecular constants of Refs. 56-59.  

For all species, the direct sum over these ro-vibrational energy levels remained converged 

throughout the temperature range of interest and was used for all species at all 

temperatures.    The state independent statistical factors are 4, 8, 8, 8, 8 and 12 for H19F, 

H35Cl, H37Cl, H79Br and H81Br and H127I.  There are no state dependent statistical factors 

for any of these species.  Neither the product approximation nor the harmonic oscillator 

approximation was used for any of these species. 

 The values of the partition sums obtained in this study agree well with other 

published values.  For H35Cl and H37Cl, we obtained 162.80 and 163.04 at 300K, 

respectively.  These are similar to the JPL [15] values of 81.232 and 81.352, which 

include the spin of the chlorine but neglect the spin of the hydrogen atom, and therefore 

are too small by a factor of 2.  For H79Br and H81Br, at 300K we obtained 202.85 and 

202.91, respectively, which are similar to the JPL values of 101.2045 and 101.2511 

respectively, considering that these values also omit the spin of the hydrogen atom.  Note, 



the comparison is made to the JPL Qrot values since Qvib(300 K) = 1.0000 for these 

isotopomers. 

 

 

ClO 

 Two species of ClO were considered in this study: 35Cl16O and 37Cl16O.  The 

rotational energies of these species were calculated using the formalism of Endo et al. 

[60] and using the constants of Cohen et al. [61]  The energies of the Π1/2 and Π3/2 states 

were calculated, producing a set of energies complete to about 9500 wavenumbers.  Tests 

indicated that for both species, the direct sum for Qrot remained converged up to about 

500K.  The state independent factor due to nuclear spin is 4 for both species.  However, 

these are not used since the hyperfine structure is explicitly considered.  There are no 

state dependent degeneracy factors for both species. 

 The analytical expression of Qrot used for ClO was that of McDowell [5].  ClO 

was analytically modeled in much the same way as NO.  The energies of the Π3/2 states 

were accounted for by the addition of another term which multiplies the partition function 

since the separation between the Π1/2 and the Π3/2 states is roughly a constant at about 

321.55 wavenumbers.  Additionally, a statistical factor of 2 was added to account for e/f 

splitting and a factor of 4 was added to account for hyperfine F states.  A comparison of 

the direct sum with the analytical expression revealed that the greatest difference between 

the two methods at points where the direct sum remained converged in the temperature 

range of interest was about 2.41% for the 35Cl16O species and 2.37% for the 37Cl16O 

species.  Both of these values occurred at 70K.  However, by 500K, the difference 



between the two methods was only about 0.064% for the 35Cl16O species and .053% for 

the 37Cl16O species.  For both species, the direct sum was used for temperatures up to and 

including 500K, while the analytical expression was used for all temperatures greater that 

500K. 

 The vibrational partition sum was calculated using the vibrational fundamentals of 

841.6 cm-1 and 837.2 cm-1 for 35Cl16O and 37Cl16O isotopomers [34].  The corrections 

discussed in Ref. 3 were utilized in calculating the partition sums for this molecule.  As 

the hyperfine splitting is handled explicitly in the direct sum and approximately in the 

analytical expression, it is inappropriate to use the product of the spins of the nuclei as a 

state independent factor.  With these corrections, our value of the partition sum for 

35Cl16O at 296K is 3291.30, which compares favorably with the value of 3227.77, given 

in Goldman et al. [3]. 

 

 

OCS 

 Five isotopomers of OCS were considered in this study: 16O12C32S, 16O12C34S, 

16O13C32C, 18O12C32S and 16O12C33S.  The rotational energies for direct summation of Qrot 

were calculated using the constants of Maki [62].  Energies were calculated for all 

species except 16O12C33S.  Tests indicated that the direct sum remained converged up to 

approximately 450K for all of these species.  The state independent degeneracy factors 

are 1, 1, 2, 1 and 4 for 16O12C32S, 16O12C34S, 16O13C32C, 18O12C32S and 16O12C33S 

respectively.  There are no state dependent degeneracy factors for any of these species. 



 The analytical expression for Qrot of OCS was that of McDowell [5], with the 

constants of Maki [62].  A comparison of the direct sum with the analytical expression 

revealed that the greatest differences at points where the direct sum remained converged 

within the temperature range of interest were about 0.45% for all species.  The analytical 

expression was used for all species at all temperatures. 

 The vibrational partition sums were calculated using the vibrational fundamentals 

as follows: for ν3 for all isotopomers the data are from Hunt et al. [63]; for the 16O12C32S 

isotopomer ν1 is from Wells et al. [64] and ν2 is from Mürtz et al. [65];  ν1 of the 

16O12C34S isotopomer is from Tan et al. [66], ν2 of this isotopomer and ν1 and ν2 of the 

16O13C32S and 16O12C33S isotopomers are from Brown and Fayt [67]; and ν1 and ν2 of the 

18O12C33S isotopomer are estimated from the principal isotopomer by isotopic mass 

scaling using the ν3 values.  The values are presented in Table 8.   

 The partition sums calculated for OCS in this study compare favorably with other 

published values.  Bouanich et al. [68] reported a value of 1229.21 at 298K for the 

16O12C32S species, while our value is 1233.49.  Blanquet et al. [69] give values of the 

rotational partition sum at 298K as 1047.4, 1025.1 and 1034.8 for the 16O12C34S, 

16O13C32S and 16O12C33S species respectively, which compare well with our values of 

1050.72, 2056.68 and 4152.39, once the state independent factors are properly accounted 

for in their partition sums.  

 

 

H2CO 



 Three species of formaldehyde are considered in this study: H2
12C16O, H2

13C16O 

and H2
12C18O.  Rotational energies for the first two species were calculated using the 

constants of Winnewisser et al. [70]; for H2
12C18O the constants of Dangoisse et al. [71] 

were used.  Tests indicated that the direct sums of Qrot remained converged up to 

approximately 1000K for the species.  The state independent statistical factors are 1, 2 

and 1 for H2
12C16O, H2

13C16O and H2
12C18O species respectively.  The state dependent 

degeneracy factors are 3 for odd rotational states and 1 for even rotational states.   

 Watson’s analytical expression of Qrot was used [6].  This expression was 

implemented for all three species on the HITRAN database.  A comparison of the direct 

sum with the analytical expression for the two species for which it was available revealed 

that the greatest difference between the two methods was about 11.8%.  The analytical 

expression was used for all three species at all temperatures. 

 The vibrational partition sums were calculated for H2
12C16O using the vibrational 

constants from Norton and Rinsland [34]; ν1=2782 cm-1, ν2=1746 cm-1, ν3=1500 cm-1, 

ν4=1167 cm-1, ν5=2843 cm-1, and ν6=1249 cm-1.  For H2
13C16O, Qvib was that of the 

principal species. 

 The values calculated for the rotational partition sums at 300K in this study of 

2885.39 and 5916.98 for the H2
12C16O and H2

13C16O isotopomers, respectively agree well 

with the values given in Ref. 15 of 2876.7 and 2949.7, considering that the value for the 

H2
13C16O species omits the state independent factor of 2 coming from the spin of the 

carbon atom. 

 

 



HOCl 

 Two isotopomers of HOCl were considered in this study: H16O35Cl and H16O37Cl.  

Rotational energy levels were calculated using the constants of Lovas [72].  Tests 

indicated that the direct sum rotational partition functions remained converged up to 

about 250K for the H16O35Cl species and 200K for the H16O37Cl species.  The state 

independent statistical factor is 8 for both species.  There are no state dependent 

statistical factors for HOCl. 

 The analytical expression of Qrot used for HOCl was that of Watson [6], with the 

same rotational constants used for the direct sum.  A comparison of the two methods 

indicated that the greatest differences which occurred at points in the temperature range 

of interest where the direct sum remained converged were 0.061% and 0.051% for 

species H16O35Cl and H16O37Cl respectively.  The analytical expression was used for both 

species at all temperatures. 

 The vibrational partition sums for both isotopomers were calculated using the 

vibrational fundamentals reported by Norton and Rinsland [34]; ν1=3069 cm-1, ν2=1239 

cm-1, and ν3=724.0 cm-1.   

 The values of the rotational partition sum calculated in this study agree well with 

other published data.  Our values at 300K are 19 700.13 and 20 049.08 for the H16O35Cl 

and H16O37Cl species respectively.  Once the state independent factor of 8 for both 

species is considered, these values agree well with the JPL values [15] of 2380 and 

2422.5.  

 

 



N2 

 Only the principal species of N2 was considered in this study.  Rotational energies 

were calculated using the Dunham coefficients of Reuter et al. [73].  The resulting energy 

levels were complete to about 11 000 wavenumbers and extend as high as 31 000 

wavenumbers.  Tests indicated that the direct sum of Qrot remained converged up to 

approximately 2000 K.  For N2, the state independent factor is 1, while the state 

dependent statistical factors are 6-fold for the even states and 3-fold for the odd states. 

 The analytical expression of Qrot used for this species was McDowell’s [5].  An 

average spin factor of 4.5 was used to account for the different weights of the even and 

odd states.  A comparison of the direct sum with the analytical expression revealed that 

the greatest difference between the two methods at points where the direct sum remained 

converged was about 0.56%.  The analytical expression was used throughout the entire 

temperature range. 

 The vibrational partition function was calculated taking the vibrational 

fundamentals of N2 as 2329.912 39 cm-1 [73]. 

 The rotational partition sum obtained in this study, 469.12 at 298 K, compares 

well with Ref. 73, 469.7. 

 

 

HCN 

 Three species of HCN were considered in this study: H12C14N, H13C14N and 

H12C15N.  A complete set of rotational energies to about 8,000 wavenumbers were 

calculated using the constants of Maki [62].  Tests revealed that the direct sum over 



rotational energies remained converged up to about 500 K for all species.  The state 

independent statistical factors are 6, 12 and 4 for species H12C14N, H13C14N and H12C15N, 

respectively.  There are no state dependent statistical factors for all species of HCN. 

 The analytical expression of McDowell [5] was used for Qrot with the rotational 

constants of Maki.  A comparison of the direct sum and the analytical expression 

revealed that the greatest difference between the two methods at points for which the 

direct sum remained converged was about 1.32% for the H12C15N species and about 

0.50% for the other two species.  The analytical expression was used for all species at all 

temperatures. 

 The vibrational partition sum was calculated using the vibrational fundamentals 

from Norton and Rinsland [34] and are reported in Table 9. 

 Comparing our values at 300K with other data we find the JPL catalog [15] gives 

values of 424.326, 435.412 and 145.680 for the rotational partition sums of species 

H12C14N, H13C14N and H12C15N respectively, while our values are 851.50, 1748.11 and 

589.44.  Note, the JPL values only include the state independent factors due to the spin of 

14N for the first two isotopomers, thus their values are lower than ours by factors of 2, 4, 

and 4.  For the principal species McDowell [5] reports a value of Qrot=141.4662 at 300 K 

compared to our value of 851.5047 which includes the state independent factor of 6. 

 

 

CH3Cl 

 Two species of CH3Cl were considered in this study: 12CH3
35Cl and 12CH3

37Cl.  

The rotational partition function was calculated using McDowell’s analytical expression 



[9] with the constants of Di Lauro and Alamichel [74].  The state dependent statistical 

factors are 4 for states with K equal zero or a multiple of 3 and 2 for other states.  While 

hyperfine structure due to chlorine and l-type doubling are known for CH3Cl, HITRAN 

includes only vibrational-rotational lines.  The state independent factors for both species, 

di=8, includes the hyperfine structure due to chlorine (4) and the l-type doubling (2).  

Including the hyperfine structure implies that gi=1. 

 The vibrational partition functions for both species were calculated using the 

vibrational constants of the 12CH3
35Cl species taken from Norton and Rinsland [34]; 

ν1=2968 cm-1, ν2=1355 cm-1, ν3=733 cm-1, ν4 (2-fold degenerate)=3039 cm-1, ν5 (2-fold 

degenerate)=1452 cm-1, ν6 (2-fold degenerate)=1018 cm-1. 

 Blanquet et al. [75, 76] report direct sum calculations for 12CH3
35Cl and 

12CH3
37Cl.  They list Qrot(297K)=13 896 and Qrot(296K)=14 050; Qvib(296K)=1.0479 and 

Qvib(296K)=1.0473; which yields Qtot(297K)=14 561.6 and Qtot(296K)=14 714.6 for the 

two isotopomers, hence hyperfine and l-type doubling are omitted.  Dang-Nhu et al. [77] 

report the same Qvib and give Qtot(296K)=4 x 14 492 for the 12CH3
35Cl species (hyperfine 

included).  These values compare well with the values calculated in this work, 

Qtot(296K)=8 x 14 562 and Qtot(296K)=8 x 14 479 for the 12CH3
35Cl and 12CH3

37Cl 

isotopomers, respectively.   

 

 

H2O2 

 There are a number of complications to the determination of the partition sums for 

H2O2.  The molecule has a number of torsional states that must be accounted for in the 



sum.  There are not enough energy levels available to calculate the partition sums over 

the desired temperature range.  Tests made using available energy levels in a direct sum 

of Qrot-tors show convergence up to about 500 K.  Finally, the analytical model presented 

below was developed using a number of approximations.  Hence, the partition sums at 

high temperatures may be questioned.  For a discussion of the complexity of this system 

see Goldman et al. [3].   

 The energy structure includes tunneling through the (low, ~390 cm-1) trans barrier 

(C2h form) and the (high, ~2560 cm-1) cis (C2v form) barrier.  For the trans tunneling the 

number of rotational levels is doubled, i.e. (J, Ka, Kc) for both τ=1,2 and τ =3,4.  For the 

cis tunneling, the levels are restricted to (J, Ka =even, Kc) for the τ =1, 4 and to (J, Ka 

=odd, Kc) for the τ =2, 3.  It might appear at first that a simple doubling of the rotational 

levels by the tunneling through the low trans barrier would give a useful approximation to 

the partition function.  This is not sufficient because the tunneling induces a splitting 

which increases from ~11 cm-1 (for n=0) to ~106.3 cm-1 (n=1), to ~206 cm-1 (n=2) etc. 

and the rotational constants (A, B, C, ΔK, etc.) vary significantly from one torsional state 

to another.   

 As pointed out by Goldman et al. [3] the torsional-rotational partition sum for 

H2O2 can be written 

 

( )∑ ∑ ∑
=

∞

=
− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

4

1 0 ,,
exp   12      

τ

τ
τ

n

KJKn

KKJ
KJKrottors kT

E
dJQ ca

ca
ca  (9) 

 



where τ designates the sublevels of the torsional state n (with torsional dependence of the 

rotational constants) and dτ,J,Ka,Kc are nuclear spin statistical weights, which arise due to 

the exchange of the two hydrogen atoms and of the two oxygen atoms.  For H2O2 one 

finds that the Ags and Aus (Bgs and Bus) vibration torsion rotation wavefunctions exist with 

a nuclear weight of 1 (3).  The state independent statistical factor is 1 for H2O2.  This 

expression can be related to an analytical expression, which assumes a complete set of 

states from J=Ka=Kc=0 to infinity, by considering the energy structure for the torsional 

states.  The τ=1 and τ=4 levels have Ka even and the τ=2 and τ=3 levels have Ka odd.  

Thus τ=1 and τ=2 taken together comprise a complete set of states as does τ=3 and τ=4.  

Thus in a shorthand notation Eq. 9 can be written  
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where gs, given by ds (2J+1), is the statistical degeneracy factor and Es the energy of state 

s.  Working with the first term, the sublevel τ = 1 starts at J=Ka=Kc=0 with energy equal 

to zero.  The sub level τ=2 completes the set of rotational states.  For a given rotational 

state, J, Ka, Kc, the torsional states can be grouped, here for the τ = 1 state, 
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where n goes to infinity. 



 Using the potential surface for H2O2 [78], the energies of the different n states for 

each torsional state can be determined.  These are given in Table 10 for n up to 7.  For all 

the higher (n>=2)  τ=1,2 or τ =3,4 torsional states the value is different because of the 

staggering effect.  The energy of a state E(n, τ)[J,Ka,Kc] can be approximated by 

E(n, τ)calculated + E(n=0, τ =1)[J,Ka,Kc], where E(n=0, τ =1)[J,Ka,Kc] is the energy level 

for n=0 and τ =1.  For a given state [J,Ka,Kc], a short hand notation is adopted; 

En=x=E(x, τ), ΔEn=x= E(x, τ)calculated, and En=0= E(n=0, τ =1) and the expression above can 

be rewritten, 
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Thus the first term of the partition sum would look like 
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where Qanalytical is an analytical form for the rotational partition function for an 

asymmetric rotor.  This can be approximated by the formula of Watson [6].  The sum in 

the square brackets can be taken to ΔEn=7, where the values for the ΔEn=x terms are taken 

from the last column of Table 10 neglecting the staggering effect.    



 For the second term of Eq. 9 the situation is more complicated because the energy 

of the lowest state (J=Ka=Kc=0, τ = 4) is at 11.437 438 cm-1.  The problem is that the 

analytical formulae rely on a full set of states starting at E=0.  To correct for this the 

energy is scaled by the value Esc=11.437 438.  Esc is added and subtracted from the 

energy of all of the τ =3,4 states.  The partition sum for the second term can then be 

written 
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where E’s = Es- Esc.  Realizing as before that for each particular rotational state there are 

energies for the torsional states, n, and defining the differences between the E’n=0 state 

and the n=1 to 7 states as ΔE’n=1, ΔE’n=2, etc., the partition sum for the second term can 

be written 
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 The analytical expression to determine the torsional-rotational partition function 

can now be written using Watson’s analytical formula with the rotational constants for 

the τ = 1, 2 and τ = 3, 4 torsional states, 
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 Vibrational partition sums were calculated using only the 5 “low amplitude 

modes, ν1, ν2, ν3, (Ags symmetry) and the ν5, ν6 (Bus symmetry), 3580. cm-1, 1395.8 cm-1, 

865.939 37 cm-1, 3780. cm-1, and 1264.584 17 cm-1, respectively, as suggested by the 

studies of Refs. 78, 79, 80, 81.    

 The direct sums converge up to about 500 K.  Figure 4 shows the percent 

difference (Qanalytical-QDS) versus temperature, the top panel shows the percent difference 

from 50-600 K and the lower panel shows the percent difference for the temperature 

range of this work.  The exact value of Q(T) calculated by direct sum at 296K is 

9851.664 73.  The value calculated via Eq. 14 is 9819.750 19, 0.3% different. 

 

 

C2H2 

 Two species of C2H2 were considered in this study: 12C2H2 and 12C13CH2.  

Rotational energies for both species were derived using the constants of Hietanen and 



Kauppinen [82].  Tests indicated that the direct sum over the rotational energies remained 

converged up to approximately 1000 K for both species.  The state independent statistical 

factors are 1 and 8 for the 12CH2 and 12C13CH2 species respectively.  The state dependent 

statistical factors for the 12CH2 species are 1 for the even states and 3 for the odd states; 

for the 12C13CH2 species the state dependent factor is 1. 

 The analytical expression used for this molecule was that of McDowell [5], with 

the constants of Hietanen and Kauppinen [82].  A comparison of the direct sum with the 

analytical expression revealed that the greatest difference between the two methods was 

about 0.99% for both species.  The analytical expression was used for both species at all 

temperature ranges. 

 The vibrational partition sums for both isotopomers were calculated using the 

principal isotopomer vibrational fundamentals of ν1=3374, ν2=1974, ν3=3289, ν4 

(2)=612, and ν5 (2)=730 [34]. 

 The partition sums obtained for C2H2 compare well with published data.  For 

example, our value of the rotational partition sum of 12C2H2 at 300K is 356.39, which is 

quite similar to the value from Ref. 5, 355.2551. 

 

 

C2H6 

 Only the principal species of ethane was considered in this study.  Rotational 

partition sums were calculated by McDowell’s analytical expression [9], using the 

constants of Duncan et al. [83].  The state independent statistical factor for this species is 



equal to 1.  The symmetry number is given by 32/3.  The analytical expression was used 

throughout the entire temperature range. 

 The vibrational partition sum was calculated using the vibrational fundamentals 

from Norton and Rinsland [34], but also including ν4 = 303 cm-1, which was omitted 

from Ref. 34, as discussed by Goldman et al. [3].  The values are presented in Table 11.  

 We can compare our value for the total internal partition sum at 50 K, 3590.781, 

with that of McDowell [9] who reports a value of Qrot equal to 3595.181.  At 300K we 

report a value of 72914.07 which can be compared with that of Pine and Rinsland [84], 

76660.4.  The comparison at 300 K demonstrates the need to add anharmonic corrections 

for torsion in ethane to our calculations.  This is currently being pursued.   

 

 

PH3 

 Only the principal isotopic species of phosphine was considered in this study.  A 

set of rotational energy levels complete to about 26 000 wavenumbers was calculated 

using the constants of Maki et al. [85].  Tests indicated that Qrot remained converged 

throughout the temperature range of interest.  The state independent statistical factor for 

this species is 2.  The state dependent factor is 4 for states with K=0 or K equal to a 

multiple of 3 and is 2 for all other states.  The direct sum for Qrot was used for this 

species throughout the entire temperature range. 

 The vibrational partition function was calculated using the following vibrational 

constants with their uncertainty in parenthesis; ν1 = 2321.1214(27) cm-1 [86], ν2 



=992.1301(23) cm-1. [87], ν3 (2-fold degenerate) = 2326.8766(23) cm-1 [86], and ν4 (2-

fold degenerate)=1118.3131(15) cm-1 [87]. 

 The rotational partition sum calculated in this study was 3259.190 at 300K.  This 

can be compared with the JPL [15] value of 803.896. After multiplying the JPL value by 

the state independent statistical factor of 2, their value is still a factor of 2 smaller than 

ours.  Our value compares well with the classical rotational partition sum from Herzberg 

[10] of 1622.81 times 2 for the state independent factor Qrot-class=3245.6  

 

 

COF2 

 Only the principal species of COF2 was considered in this study.  The rotational 

partition sum was calculated using the analytical formula of Watson [6] and the rotational 

constants of Goldman et al. [88].  The state independent statistical factor for this species 

is 1.  The state dependent degeneracy factors are 3 for odd rotational states and 1 for even 

rotational states, hence a factor of 2 in the analytical formula.  The analytical expression 

was used throughout the entire temperature range. 

 The vibrational partition sum was calculated using the vibrational fundamentals 

from Norton and Rinsland [34]; ν1=1944 cm-1 , ν2=963 cm-1 , ν3=582 cm-1 , ν4=1242 cm-

1 , ν5=619 cm-1 , and ν6=774 cm-1 . 

 The partition sums for COF2 compare favorably with other results from the 

literature.  For example, the value of the rotational partition sum at 296K from this study 

is 60 476.27, while the value from Ref. 88 is 59 715. 

 



 

SF6 

 Only the principal isotopic species of SF6 was considered in this study.  The 

rotational partition sum was calculated using McDowell’s analytical formula for spherical 

top molecules [8] using the rotational constants of Bobin et al. [89].  The state 

independent statistical factor is 1.  The state dependent degeneracy factors are 2, 10, 8, 6, 

and 6 for the A1, A2, E, F1 and F2 levels, respectively.  The averaged state dependent 

statistical factors needed in the analytical calculation is {(2*IF+1)**6}/24.  Given the 

spin of the fluorine nuclei, IF = ½, this factor reduces to 8/3.  The analytical expression 

was used throughout the entire temperature range. 

 The vibrational partition sum was calculated using the vibrational fundamentals; 

ν1 (3-fold degenerate)=346 cm-1, ν2 (3-fold degenerate)=523 cm-1, ν3 (3-fold 

degenerate)=615 cm-1, ν4 (3-fold degenerate)=948 cm-1, ν5 (2-fold degenerate)=642 cm-1, 

and ν6=774 cm-1 [34]. 

 The partition sums calculated in this study agree well with an approximate 

calculation made by Pine and Patterson [90] which gives the total internal partition sum 

at 160K as 2.423 x 105, which is quite close to our value of 2.42469 x 105.  McDowell [8] 

reports a value of Qrot at 5 K equal to 1121.216 which compares well with the value from 

this work, 1121.328. 

 

 

H2S 



 Three species of hydrogen sulfide were considered in this study: H2
32S, H2

34S and 

H2
33S.  The rotational partition sums for all three species were calculated using Watson’s 

analytical formula [6], with the rotational constants of Flaud et al. [91]  The state 

independent degeneracy factors for H2S are 1, 1 and 4 for the : H2
32S, H2

34S and H2
33S 

species respectively.  The state dependent degeneracy factors are 3 for odd rotational 

states and 1 for even rotational states.  The analytical expression was used for all three 

species throughout the temperature range of interest. 

 The vibrational partition sums of all species were calculated using the vibrational 

fundamentals of the principal species (H2
32S); ν1=2615 cm-1, ν2=1183 cm-1, and ν3=2626 

cm-1 [34]. 

 The partition sums at 296K calculated in this study are 503.07, 504.35 and 

2014.93 for the H2
32S, H2

34S and H2
33S species, respectively.  These can be compared 

with the values of 505.6, 506.9 and 506.2 from Ref. 91, considering that their value for 

the H2
33S species is too small by a factor of 4. 

 

 

HCOOH 

 Only the principal isotopic species of formic acid was considered in this study.  

The rotational partition sum was calculated using Watson’s analytical expression [6], 

with the rotational constants of Willemot [92].  The state independent statistical factor for 

this species is 4.  There are no state dependent statistical factors for this species.  The 

analytical expression was used throughout the entire temperature range. 



 The vibrational partition sum was calculated using the vibrational fundamentals of 

Ref. 34 and are reported in Table 12. 

 The value for the rotational partition sum at 300K determined in this work is 

35756.94, which can be compared with the JPL [15] value of 8883.8, noting that the JPL 

value neglects the state independent statistical factor of 4. 

 

 

HO2 

 Only the principal isotopic species of the hydroperoxy radical is considered in this 

study.  The rotational partition sum was calculated using the analytical formula of 

Watson [6] with the rotational constants of Charo and DeLucia [93].  The state 

independent statistical factor for this species is 2.  There are no other state dependent 

factors for this species.  The analytical expression, of Watson, with an additional 

statistical factor of 2 was in order to account for the F-splittings due to ESR present in 

this open shell molecule, was used throughout the temperature range of the study. 

 The vibrational partition sum was calculated using the vibrational 

fundamentals from Norton and Rinsland [34]; ν1=3436 cm-1, ν2=1392 cm-1, and ν3=1098 

cm-1. 

 The JPL catalogue [15] reports a value for the rotational partition sum at 300K of 

4 375.703, which compares well with our value of 4 361.59. 

 

 

O 



 As the oxygen atom has no defined rotational or vibrational partition sum, it was 

omitted from this study. 

 

 

ClONO2 

 Two species of chlorine nitrate are considered in this study: 35Cl16O14N16O2 and 

37Cl16O14N16O2.  The rotational partition sums for both species were calculated using the 

analytical formula of Watson [6], with the rotational constants of Carten and Lovejoy 

[94].  The state independent statistical factor is 12 for both species.  There are no state 

dependent statistical factors for either species.  The analytical expression was used for 

both species throughout the entire temperature range. 

 The vibrational partition sum was calculated using the vibrational fundamentals of 

Norton and Rinsland [34], with the addition of ν9 = 122cm-1, which was originally 

omitted from Ref. 34 as discussed in Ref. 3.  The values are presented in Table 13.  A 

complete description of the torsional behavior of this species has not yet been included. 

 The values of the partition sums obtained in this work compare well with the 

values from the JPL catalog [15].  The JPL values for the rotational partition sums at 

300K, which omit the state independent statistical factor of 12 are 100 540 and 103 108 

for the 35Cl16O14N16O2 and 37Cl16O14N16O2 species respectively, while our values are  

1 214 131.37 and 1 245 035.12 respectively.  Our total internal partition sums at 296 K,  

4 788 793.44 and 4 910 684.51 for 35Cl16O14N16O2 and 37Cl16O14N16O2, can be compared 

with the values from Flaud et al. [95] of 4 849 698. and 5 019 571. 

 



 

NO+ 

 Only the principal isotopic species of NO+ was considered in this study.  The 

rotational partition sum was calculated using McDowell’s analytical expression [5], with 

the rotational constants of von Esse [96].  The state independent statistical factor for this 

molecule is 3.  There are no state dependent statistical factors.  The analytical expression 

was used throughout the temperature range of interest. 

 The vibrational partition function was calculated using the vibrational 

fundamental of Ref. 96; 2344 cm-1.   

 

 

HOBr  

 Two species of HOBr were considered in this study: H16O79Br and H16O81Br.  The 

rotational partition sums for both species were calculated using Watson’s analytical 

expression [6], with the rotational constants of Cohen et al. [97].  The state independent 

statistical factor is 8 for both species.  There are no state dependent statistical factors for 

either species.  The analytical formula was used for both species throughout the entire 

temperature range of interest. 

 The vibrational partition sum was calculated using the vibrational fundamentals of 

Cohen et al. [97] shown in Table 14. 

 The partition sums calculated for HOBr agree well with the values published in 

the JPL catalog [15].  Our values of Qrot at 300K are 29 046.34 for the H16O81Br species 

and 28 987.19 for the H16O79Br species.  These values compare favorably with the JPL 



values which are 13 611.629 for the H16O81Br species and 13 552.774 for the H16O79Br 

species, bearing in mind that these values apparently neglect the spin of the hydrogen 

atom from the state independent degeneracy factor. 

 

 

C2H4 

 Three isotopomers of C2H4 were considered in this study: 12C2H4, 12C13CH4 and 

12C2H3D.  Rotational partition sums for both species were calculated using Watson’s 

analytical formula [6], using the rotational constants of Ref. 98 for the 12C2H4 species, 

Ref. 99 for the 12C13CH4 species and Ref. 100 for the 12C2H3D species.  The state 

independent degeneracy factors are 1, 2 and 24 for the 12C2H4, 12C13CH4 and 12C2H3D 

species respectively.  The state dependent degeneracy factors are 5 for the even levels 

and 3 for the odd levels of the non-deuterated species [101].  The deuterated species have 

no state dependent degeneracy factors.  The analytical expression was used for all three 

species throughout the temperature range. 

 The vibrational partition functions were calculated using the constants from 

Norton and Rinsland [34] for the 12C2H4 species and Duncan et al. [102, 103] for the 

12C2H3D species.  See Table 15 for the values.  The vibrational partition sum for the 

12C13CH4 species was calculated using the vibrational fundamentals of 12C2H4. 

 

 

Recall of Data 



 Although some compilations of partition functions [1, 2. 104, 105] utilized a four- 

or five-coefficient polynomial fit to the Q(T) data and provided the coefficients as a 

means of rapid recall, this work has abandoned that concept in favor of interpolation.   

 The reasons for this transition are numerous.  First, as available computer power 

and storage space constantly increase, it is no longer necessary to provide final data in the 

most terse manner possible.  The entire set of tables as an uncompressed, fixed format 

file occupies only a few megabytes of storage space, and although the interpolation 

routines require somewhat more computer time than the polynomial expansion, both 

methods are nearly instantaneous in modern terms.   

 Second, when polynomial fits were used, there were a number of species for 

which the error introduced by the fits was greater than the 1% criterion at certain 

temperatures.  Studies revealed that systems with many low lying vibrational states gave 

vibrational partition sums that increase rapidly.  When the product with the rotational 

partition sum is made the resulting total internal partition sum increases too rapidly for 

the polynomial to fit accurate in the chosen temperature ranges.  With interpolation of 

Q(T) data the situation is improved.  The values produced by interpolation are, in general, 

much closer to the calculated values than those produced by polynomial expansion.  Fig. 

5 shows the error introduced by using interpolation with a step size of 50 K for nitric 

acid.  Nitric acid was selected for this study because its partition function is one of the 

most difficult species to fit by a polynomial function.  As evidenced by these graphs, a 

step size of 50K is more than satisfactory, even for a species which is troublesome to fit. 

 A third reason for the switch to interpolation is that it presents the data in the most 

direct form possible.  By looking at the tables, or using them as input data to a graphing 



program, it is possible to immediately see trends in the partition functions.  Also, since 

the actual numbers are provided, rather than coefficients which are not directly 

meaningful, there is a much smaller chance of the wrong values being used in a 

calculation, or the accidental switching of two coefficients for example.   

 As part of this work, various interpolation schemes were considered.  Since 

partition functions have a rather exponential trend, the concept of storing either ln(Q(T)) 

versus T or ln(Q(T)) versus ln(T) was tested for the efficacy of reducing interpolation 

errors.  Three schemes were tested; 4-point Lagrange interpolation of Q(T) versus T, 

ln{Q(T)} versus T, and ln{Q(T)} versus ln{T}.  Figure 6 shows the percent difference 

(calculated-interpolated) for the three schemes for nitric acid.  From the plot it is clear 

that the Q(T) versus T and ln{Q(T)} versus ln{T} interpolations are more precise than the 

ln{Q(T)} versus T interpolation.  Figure 7 shows the maximum error at all points within 

the temperature range of interest for nitric acid, for the Q(T) versus T and ln{Q(T)} 

versus ln{T} interpolations as a function of the spacing between temperature points.  As 

Fig. 7 shows, although taking the logarithm of both axes significantly reduces the 

maximum error at large step-size values for most species, it does little, or even increases 

the error at smaller step-size values.  Additionally, providing tables of ln(Q(T)) versus 

ln(T) still makes it impossible to examine the data without performing further 

calculations.  In light of all of these findings, and a critical analysis of the size of the 

tables required versus induced error, the decision was made to use interpolation with a 

25K step size and no logarithms. 

 Data tables were generated that list values for Q(T) at 25K intervals.  A four-point 

Lagrange interpolation scheme is used, with extra points provided below 70K and above 



3000K so that a four point interpolation can be used throughout the entire temperature 

range.  These tables and the four-point Lagrange interpolation scheme were then coded 

into a FORTRAN program (TIPS_2003.for) and subroutine (BD_TIPS_2003.for) and are 

available from one of the authors (RRG, see faculty.uml.edu/Robert_Gamache) or the 

HITRAN ftp site (cfa-ftp.harvard.edu/pub/HITRAN). 

 

 

Discussion 

 The partition sums calculated above include all isotopomers on the HITRAN 

database as well as some isotopomers not currently on the database.  The partition sums 

are provided in tabular form with a 25K step size, accompanied by a Lagrange 

interpolation program to evaluate the partition sums at any temperature within the 

temperature range of this study.  The partition sums are also provided in tabular form in 1  

K step intervals on the HITRAN website site (cfa-ftp.harvard.edu/pub/HITRAN).  The 

conversion to an interpolation scheme has allowed for the rapid distribution of a number 

of partition sums which were previously undistributed because they could not be fit with 

a suitable degree of accuracy to the polynomial expression used at that time. 

 Although this work is similar to previously released partition functions, it also 

includes many new species, interpolation for greater accuracy and incorporates all of the 

corrections to the previous set of partition functions discussed in Goldman et al. [3]  The 

partition sums computed here are compared with literature values when available.  Most 

of the comparisons show very good agreement: the percent difference, 100*(Qliterature-Qthis 

work)/Qliterature, for 83 comparisons are less than 1 percent, 14 are between 1 and 2 percent, 



and for C2H6 at 300 K is 4.75%.  There are a number of improvements that will be made 

to the partition sums in the future.  For molecular systems where it is necessary to use the 

product approximation this work only included the harmonic oscillator approximation of 

Herzberg [10] for the vibrational partition sums.  Anharmonic corrections will be added 

to the model for ethane.  The analytical approximation of the rotational partition sum for 

asymmetric rotors [6] includes a component for centrifugal distortion that was not applied 

in this work.   

 A near complete set of figures used for the study of convergence of the direct sum 

and analytical partition sums, as well as comparisons between calculations, etc. are 

available at the web site of one of the authors (faculty.uml.edu/Robert_Gamache). 
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Tables 

Table 1. Vibrational Fundamentals in cm-1 for Water Vapor Isotopologues 

 

 H2
16O H2

18O H2
17O HD16O HD18O HD17O 

ν1 3657.053 3649.685 3653.143 2723.680 2723.680* 2723.680* 
ν2 1594.750 1588.279 1591.325 1403.484 1396.2665 1399.6747  
ν3 3755.929 3741.567 3748.318 3707.459 3707.459* 3707.459* 

 *  values from the corresponding band of HD16O 

 

 

Table 2. Vibrational Fundamentals in cm-1 for Carbon Dioxide Isotopologues 

 

 
12C16O2 13C16O2 12C16O18O 12C16O17O 13C16O18O 

ν1 1388.186 70 1370.0699 1365.828 10 1376.028  1342.293  
ν2 (2 fold degenerate) 667.360 50 648.4645 662.3501 664.730 643.328 
ν3 2349.1650 2283.5217 2332.1363 2340.014 2265.985 
 

13C16O17O 12C18O2 12C17O18O 12C16O2  

ν1 1355.117 1347.098 1355.658 1364.940  
ν2 (2 fold degenerate) 645.754 657.331 659.704 662.066  
ν3 2274.100 2314.051 2322.436 2330.593  

 

 



Table 3 State-dependent and State-independent Degeneracy Factors for the Isotopologues 

/Isotopomers of Ozone. 

Isotopologues/Isotopomer gs  gi 
 Even odd  
16O16O16O 1 0 1 
16O16O18O 1 1 1 
16O18O16O 1 0 1 
16O16O17O 1 1 6 
16O17O16O 1 0 6 
18O18O16O 1 1 1 
18O16O18O 1 0 1 
16O17O18O 1 1 6 
17O16O18O 1 1 6 
17O18O16O 1 1 6 
17O17O16O 1 1 36 
17O16O17O 15 21 1 
18O18O18O 1 0 1 
18O18O17O 1 1 6 
18O17O18O 1 0 6 
17O17O18O 1 1 36 
17O18O17O 15 21 1 
17O17O17O 15 21 6 

 
 

Table 4. Vibrational Fundamentals in cm-1 for Ozone Isotopologues/Isotopomers 

 

16O3 16O16O18O 16O18O16O 18O18O16O 18O16O18O 18O18O18O 
ν1 700.931 684. 613 693.306 677.504 668.085 661.492 
ν2  1042.084 1028.112 1008.453 993.927 1019.350 984.819 
ν3 1103.137 1090.354 1074.308 1060.709 1072.217 1041.556 
 16O16O17O 16O17O16O 17O17O16O 17O16O17O 17O3 17O17O18O 
ν1 692.435 697.079 688.8 684.0 680.2 672.4 
ν2  1035.358 1024.395 1017.5 1030.5 1012.163 1005.4 
ν3 1095.693 1087.829 1080.2 1086.9 1070.946 1063.7 
 17O18O17O 18O18O17O 18O17O18O 17O16O18O 16O17O18O 16O18O17O 
ν1 676.6 668.9 664.5 676.0 680.9 685.0 
ν2  995.1 988.5 1000.3 1024.1 1009.6 1000.8 
ν3 1056.3 1049.1 1055.2 1080.1 1074.7 1066.1 

 
 



Table 5. Vibrational Fundamentals in cm-1 for N2O Isotopologues 

 
 14N2

16O 14N15N16O 15N14N16O 14N2
18O 14N2

17O 
ν1 2223.7568 2177.6568 2201.6053 2216.7112 2220.0753 
ν2 (2-fold degenerate) 588.7688 575. 4336 585.3121 584.2247 586.3620 
ν3 1284.9033 1280.3541 1269.8920 1246.8846 1264.7043 

 
 

Table 6. Vibrational Fundamentals in cm-1 for Carbon Monoxide Isotopologues 

 
 12C16O 12C17O 12C18O 13C16O 13C17O 13C18O 
ν1 2143.271 461 2116.295 334 2092.122 010 2096.067 229 Same as principal species 2043.692 206 
 
 
Table 7. Vibrational Fundamentals in cm-1 for Nitric Acid 

 
 H14N16O3 
ν1 3550 
ν2 1710 
ν3 1326 
ν4 1303 
ν5 879 
ν6 647 
ν7 579 
ν8 762 
ν9 458 

 
 
Table 8. Vibrational Fundamentals in cm-1 for OCS Isotopologues 
 

 16O12C32S 16O12C34S 16O13C32S 16O12C33S 18O12C32S 
ν1 858.9669 847.7394 854.467 853.20 844. 
ν2 (2-fold degenerate) 520. 4221 519.696 505.011 520.04 511. 
ν3 2062.201 19 2061.445 64 2009.228 49 2061.808 36 2026.147 01 

 
 
Table 9. Vibrational Fundamentals in cm-1 for HCN Isotopologues 
 

 H12C14N H13C14N H12C15N 
ν1 2097. 2086.  2061.345 
ν2 (2-fold degenerate) 713.0 709. 704.656 
ν3 3311. 3310.5 3310.088 

 
 



Table 10. Measured and Calculated Energies for as a function of τ and n for H2O2.  
 

τ 1 1 2 2 τ 1 and 2 
n E(τ,n)calculated E(τ,n)measured E(τ,n)calculated E(τ,n)measured E(τ,n)average 
0 -0.781 614 58x10-4 0.00000 -0.138 803 11x10-3 0.00000 0.0 
1 0.254 570 66x103 254.5499 0.254 570 64x103 254.5499 254.5499 
2 0.569 695 90x103 569.7427 0.569 696 79x103 569.7442 569.74345 
3 0.100 094 09x104 1000.882 0.100 092 57x104 1000.930 1000.906 
4 0.147 482 54x104 --- 0.147 560 12x104 --- 1475.2133 
5 0.194 885 14x104 --- 0.196 008 83x104 --- 1954.469 85 
6 0.234 737 89x104 --- 0.244 901 98x104 --- 2398.199 35 
7 0.273 083 66x104 --- 0.297 546 21x104 --- 2853.149 35 

τ 3 3 4 4 τ 3 and 4 
n E(τ,n)calculated E(τ,n)measured E(τ,n)calculated E(τ,n)measured E(τ,n)average 

0 0.114 475 71x102 11.4372 0.114 475 60x102 11.4372 11.4372 
1 0.370 866 60x103 370.8932 0.370 866 60x103 370.8932 370.8932 
2 0.776 193 40x103 766.1148 0.776 199 90x103 766.1215 766.11815 
3 0.123 510 88x104 --- 0.123 522 66x104 --- 1235.1677 
4 0.171 477 83x104 --- 0.171 805 62x104 --- 1716.417 25 
5 0.215 987 69x104 --- 0.220 110 44x104 --- 2180.490 65 
6 0.252 152 67x104 --- 0.270 0877 2x104 --- 2611.2000 
7 0.298 295 10x104 --- 0.326 630 09x104 --- 3124.625 95 

 

 
Table 11. Vibrational Fundamentals in cm-1 for C2H6 
 

12C2H6 ω / cm-1 
ν1 2954. 
ν2 1388. 
ν3 995. 
ν4 303. 
ν5 2896. 
ν6 1379. 

ν7 (2-fold degenerate) 2985. 
ν8 (2-fold degenerate) 1472. 
ν9 (2-fold degenerate) 822. 
ν10 (2-fold degenerate) 2969. 
ν11 (2-fold degenerate) 1468. 
ν12 (2-fold degenerate) 1190. 

 
 



Table 12. Vibrational Fundamentals in cm-1 for HCOOH 
 

H12C16O16OH ω / cm-1 
ν1 3570. 
ν2 2943. 
ν3 1770. 
ν4 1387. 
ν5 1229. 
ν6 1105. 
ν7 625. 
ν8 1033. 
ν9 638. 

 
 
Table 13. Vibrational Fundamentals in cm-1 for ClONO2 
 

35Cl16O14N16O2 
and 

37Cl16O14N16O2 

ω / cm-1 

ν1 1735. 
ν2 1292. 
ν3 809. 
ν4 780. 
ν5 560. 
ν6 434. 
ν7 270. 
ν8 711. 
ν9 122. 

 
 
Table 14. Vibrational Fundamentals in cm-1 for HOBr Isotopologues 
 

 ω / cm-1(H16O79Br) ω / cm-1 (H16O81Br) 
ν1 3614.902 3614.903 
ν2 1162.570 388 1162.494 439 
ν3 620.18 619.05 

 
 



Table 15. Vibrational Fundamentals in cm-1 for C2H4 Isotopologues 
 

 ω / cm-1 (12C2H4
) ω / cm-1 (12C2H3D) 

ν1 3026. 3028.2 
ν2 1623. 1605.5 
ν3 1342. 1288.0 
ν4 1023. 1000. 
ν5 3103. 3061.6 
ν6 1236. 1129. 
ν7 949. 808. 
ν8 943. 943. 
ν9 3106. 3096.1 
ν10 826. 730. 
ν11 2989. 2274.0 
ν12 1444. 1400.0 

 
 
 
 

 



Figures 

 1 Comparison of the product approximation, Qvib*Qrot, with QDirect Sum for 

CO2. 

 2 Percent difference between QDirect Sum and Qanalytical formula for H2
16O. 

 3 Convergence of the partition sum as a function of temperature for 16O3. 

 4 Percent difference between Qanalytical model and QDirect Sum versus temperature 

for H2O2. 

 5 Error in recalculated Q(T) by interpolation with 50 K step size for Nitric 

Acid. 

 6 Error in recalculated Q(T) by different interpolation schemes with 25 K 

step size for Nitric Acid. a) Q vs. T, b) ln{Q} vs. T, and c) ln{Q} vs. 

ln{T}. 

 7 Error versus temperature step size in interpolation for Q(T) vs. T (solid 

circles) and ln{Q(T)} vs. ln{T} (inverted triangles) for Nitric Acid. 
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 3 Convergence of the partition sum as a function of temperature for 16O3. 

 

 



 4 Percent difference between Qanalytical model and QDirect Sum versus temperature 

for H2O2. 

 

 



 5 Error in recalculated Q(T) by interpolation with 50 K step size for Nitric 

Acid. 

 

 



 6 Error in recalculated Q(T) by different interpolation schemes with 25 K 
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circles) and ln{Q(T)} vs. ln{T} (inverted triangles) for Nitric Acid. 

 

 

 

 

 


