I. General Information: Instructors and Course

Section 201 Instructor: Prof. Tricia Chigan
Office Location: BL 401
Office hours: Monday, Wednesday, Friday: 10:00am-11:00am
Phone: (978) 934-3364
E-mail: Tricia_Chigan@uml.edu
Lecture meeting time & location: Section 201: Monday, Wednesday, Friday 9:00 am-9:50 am in Ball Hall 210

Sections 203 & 204 Instructor: Prof. Ryan McPherson
Office Location: BL 219
Office hours: Monday, Wednesday, Friday: 11:00am-11:50am and 1:00pm-1:50pm or by appointment
Phone: (978) 934-3300
E-mail: Ryan_McPherson@uml.edu
Lecture meeting time & location: Section 203: Monday, Wednesday, Friday 12:00pm-12:50pm in Ball Hall 314
Section 204: Monday, Wednesday, Friday 2:00pm-2:50pm in Ball Hall 210

Pre-requisites: (1) MATH 1320 Calculus II with a grade of C or better.
OR (2) COMP 1020 Computing II.

Students for whom the course is intended:
This is a required course for all Electrical & Computer Engineering, Computer Science, and Mechanical Engineering (Robotics option) majors. Students in the Electrical Engineering and Computer Engineering graduate programs can also take this course to make up deficiency.

Course web-page: http://faculty.uml.edu/Tricia_Chigan/Courses/16_265/LogicDesign.html

II. Textbook, Notes, Reference, Software
2. Anh Tran, "Experiments in Logic Design", 2014 (To be handed out in week 4)

III. Course Structure and Goals
Structure: There are three 50-minute lectures each week. There is also a laboratory component of five analysis/designs with software simulation and circuit wiring. Homework exercises will also be assigned but not collected/graded.

Goals: This is an introductory course, which covers the basics of digital circuit design in both theory and practice. Upon completion of the course, students are expected to be able to:
1. analyze combinational and sequential circuits,
2. design/synthesize combinational circuits using SSI and MSI circuits and programmable logic devices,
3. design/synthesize synchronous sequential circuits,
4. apply the design techniques of combinational and sequential circuits to the design of more complex circuits using register level logic.

IV. Content Outline
The contents of the course are partitioned into four parts: fundamentals, combinational logic, sequential logic, and register level logic. How they are related to each other and the topics in each part are outlined in the chart on p.3. It also shows where the experiments are incorporated into the course.
V. Course Objectives

A. Fundamentals
1. Convert numbers between two systems.
2. Convert numbers to computer codes or vice versa.
3. Generate parity check bits for error detection.
4. Find the 2's complement of signed numbers.
5. Subtract two signed numbers using 2's complement arithmetic.
6. Prove the validity of Boolean equations.
7. Convert and simplify Boolean expressions to SOP and POS by algebraic methods.
8. Minimize the number of literals of a Boolean function.
9. Find the complement and dual of Boolean expressions.
10. Expansion of Boolean functions into sub-functions.
11. Construction of Boolean functions from sub-functions.
12. Represent Boolean functions by binary trees.

B. Combinational Logic
1. Convert Boolean functions to minterm, maxterm, standard SOP & POS forms.
2. Apply active-high and active-low signal levels to circuit inputs and outputs.
3. Apply DeMorgan’s theorem to circuit diagrams without using Boolean algebra.
4. Construct the Karnaugh map for a Boolean function.
5. Use Karnaugh maps to find the simplest SOP & POS for a Boolean function.
6. Recognize the exclusive-OR patterns on a K-map.
7. Partition Karnaugh maps into sub-function maps.
8. Express word problems by truth tables and Boolean functions.
9. Implement a Boolean function as various 2-level circuits.
11. Design combinational circuits using NAND, NOR, AND, OR, XOR.
12. State the functions of decoders, encoders, multiplexers, and demultiplexers.
13. Construct large-size decoders from smaller size decoders.
15. Construct large-size decoders from smaller size decoders.
17. Describe the structures and characteristics of ROM, PLA, & PAL.
18. Implement Boolean functions using programmable logic devices.

C. Sequential Logic
1. Derive the characteristics of SR latches and flip-flops.
2. Derive the characteristic tables, characteristic equations, and state diagrams of various types of flip-flops.
3. State the operations of master-slave flip-flops and edge-triggered flip-flops.
4. Describe the operations of shift registers and counters.
5. Design universal shift registers, self-correcting counters, and ring counters.
6. Describe the difference between the Moore model and the Mealy model of synchronous sequential circuits.
7. Draw the timing diagrams for synchronous sequential circuits.
8. Derive the state diagram of a synchronous sequential circuit by following the analysis procedure.
9. Construct the state diagram of a synchronous sequential circuit.
10. Convert state diagrams to transition tables and next state maps.
11. Derive excitations to flip-flops from next state maps.
12. Design synchronous sequential circuits by following the synthesis procedures.

D. Register Level Logic
1. Partition a more complex circuit into a data path and a control circuit.
2. Describe the operations carried out by a data path.
3. Describe the operations of an algorithmic state machine (ASM) chart.
4. Convert state diagrams to ASM charts.
5. Design using one flip-flop per state.
6. Design state generators.
7. Design the control circuit.
8. Determine the functions performed by an arithmetic processor.
Fundamental

- Number systems & computer codes
 - Boolean algebra
 - Computer arithmetic

Combinational logic

- Switching functions & circuits
 - Analysis of combinational circuits
 - Decoders, encoders, multiplexers, demultiplexers
 - Programmable logic devices (ROM, PLA, PAL)
 - Karnaugh maps
 - Synthesis of combinational circuits
 - Experiment 1
 - Experiment 2

Sequential logic

- Memory elements, latches & flip-flops
 - Registers & counters
 - Analysis of synchronous sequential circuits
 - Synthesis of synchronous sequential circuits
 - Experiment 4

Register level logic

- Control circuit & data path
 - Design of arithmetic processor
 - Experiment 5
VI. Laboratory Structure:
There are five experiments in this course. Circuit(s) designed in each experiment are simulated by using
the software package LogicWorks 4 or LogicWorks 5.0. Circuits can be designed at home or in the
computer laboratory (Ball 420) or in the Digital Learning Center 204 in Lydon Library, where
LogicWorks 4 is available. LogicWorks 4 is also available on vlabs.uml.edu. You can login with
your school credentials. A report is required for each experiment. Students are also required to wire a
given combinational circuit in the laboratory using SSI circuits.

Policies:
1. All experiments in this course should be done independently. No collaboration or copying is
 allowed. Punishments for violating this rule are listed below.
 (i) Report: No credit for the experiment.
 (ii) Design: The letter course grade will be reduced by two levels. For example, a grade of
 “A” will be reduced to “B+”, “C+” will become “C−”.
 (iii) A letter will be sent to the student’s advisor/department chair/program director.
 Punishment also applies to those who are copied. Therefore safeguard your reports and
designs. Do not leave them in public domain.
2. Both the LogicWorks design .cct file and the hard copy of the lab report are due before 2:00
 p.m. of the due date. There is a grace period of 48 hours. If the end of the grace period is not
 on a school day, the grace period is extended to 2:00 p.m. of the next school day. No report
 will be accepted after the grace period. Exceptions may be granted only by the course
 instructor under unusual circumstances beyond the control of the student.
3. Circuits that are not designed according to requirements will not be accepted.
4. Additional report and design requirements are described in the laboratory notes.

 The wiring of a combination circuit is scheduled on Tuesday, Thursday and Friday (TBD) in
week 9. Each student may sign up a slot not in conflict with their class schedule in advance.

VII. Calendar and Lecture Topics
The course calendar and lecture topics are given on page 5. Note that (a) lecture topics do not
necessarily follow the order of the course contents outlined in Section IV, (b) the coverage of each
topic may need more or less time than what is allocated. Thus it is the responsibility of students to
attend classes and find out the exact coverage of the course materials in each class.

When class is cancelled or school is closed due to adverse weather or any other reasons, the make-up
schedules for examinations will be announced separately. In such cases, the due day for experiments
will be extended to the next school day. The wiring of circuits will be re-scheduled. You may call 978-
934-2121 for a recorded announcement of class cancellation.

VIII. Course Grade
The distribution of grades is given below. The grade policies for laboratory are described separately in
Section VI.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>Circuit wiring</td>
</tr>
<tr>
<td></td>
<td>Experiments 1 & 5</td>
</tr>
<tr>
<td></td>
<td>Experiments 2, 3, & 4</td>
</tr>
<tr>
<td>Examinations 1</td>
<td>20%</td>
</tr>
<tr>
<td>Examinations 2</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Class attendance</td>
<td>5%</td>
</tr>
</tbody>
</table>

Overall grade for attendance =

\[
\text{Overall grade for attendance } = \frac{\text{Total number of classes attended}}{(0.80*\text{total number of classes attendance taken})}
\]

“Attending a class” is defined as “presence for a full lecture of 50 minutes”. An index of 0.8 is factored
in the formula. A student may miss 20% of the classes due to conditions beyond his/her control such as
sickness, etc., but still get full credits for attendance. The maximum overall grade is 100 points.

A minimum standard of 60% in the combined experiment and examination grades is used as a measure
for the passing of the course. Assignments of course (letter) grades other than "F" depend on class
distributions, which usually start with a minimum of 90% for "A".

A course grade of F will be assigned for cheating in exams. A letter will be sent to the student’s
advisor/department chair/program director.
Calendar and Lecture Topics

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Lecture Topics (Chapter)</th>
<th>Laboratory/Remark</th>
</tr>
</thead>
</table>
| 1 | 09/04 (W) 09/06 (F) | Introduction to digital systems (1)
Number systems and codes (2) | |
| 2 | 09/09 (M) 09/11 (W) 09/13 (F) | Number systems and codes (2)
Boolean algebra (3) | |
| 3 | 09/16 (M) 09/18 (W) 09/20 (F) | Boolean algebra (3) | 09/17 last day to add/drop classes |
| 4 | 09/23 (M) 09/25 (W) 09/27 (F) | Boolean functions and digital circuits (4) | Experiments handouts distributed |
| 5 | 09/30 (M) 10/02 (W) 10/04 (F) | Boolean functions and digital circuits (4)
Examination 1 (Friday 10/04, 6:30 pm – 8:00 pm) | |
| 6 | 10/07 (M) 10/09 (W) 10/11 (F) | Karnaugh maps (5) | **Experiment 1 due Wednesday, 10/09** |
| 7 | 10/15 (T) 10/16 (W) 10/18 (F) | Synthesis of combinational circuits (6)
Decoders and encoders (7) | 10/14(M) Columbus Day
10/15(T) Monday Schedule |
| 8 | 10/21 (M) 10/23 (W) 10/25 (F) | Multiplexers and de-multiplexers (7) | **Experiment 2 due Wednesday, 10/23** |
| 9 | 10/28 (M) 10/30(W) 11/01 (F) | Latches and flip-flops (9)
Shift registers & counters (10) | Circuit wiring |
| 10 | 11/04 (M) 11/06 (W) 11/08 (F) | Analysis and synthesis of sequential circuits (10) | **Experiment 3 due Wednesday, 11/06** |
| 11 | 11/13 (W) 11/15 (F) | Adder. Signed numbers. ASM charts (11)
Examination 2 (Friday 11/15, 6:30 – 8:00 pm) | 11/11: Veteran's Day
(university closed)
11/14- Last day to withdraw with “W” |
| 12 | 11/18 (M) 11/20 (W) 11/22 (F) | Control circuit and data path (11) | **Experiment 4 due Wednesday, 11/20** |
| 14 | 12/02 (M) 12/04 (W) 12/06 (F) | Design of an arithmetic processor (11) | **Experiment 5 due Friday, 12/06** |
| 15 | 12/09 (M) 12/11 (W) | Design with ROM, PLA, & PAL (8)
Review | |
| 16 | **Final Examination** | **Date, time, and room to be announced** | |