Last/First name A. Danylov

- 1. (30pt)
- 1. Conceptual Questions
- (20pt)

(30 point) Put a circle around the letter that you think is the best answer.

(20pt)

(20pt)

1.1. (6pts) An electron is released from rest at x = 2 m in the potential shown. What does the electron do right after being released?

- A) Stay at x = 2 m
- B) Move to the right (+ x) at steady speed
- C) Move to the right with increasing speed
- D) Move to the left (-x) at steady speed
- E) Move to the left with increasing speed

 $V \longrightarrow E \xrightarrow{g \leftrightarrow g} F_{e} \longrightarrow a \longrightarrow direction$ $E_{x} = -\frac{dV}{dx} F_{e} = qE \qquad F = ma$

1.2.(6pts) This is a graph of the x-component of the electric field along the x-axis. The potential is zero at the origin. What is the potential at x=2m?

- A) 200 V
- B) 100 V
- C) 0 V
- D) -100 V

 $\Delta V = V_4 - V_i = -\int_{i}^{\infty} E_x dx \qquad i \rightarrow x = 0$ $f \rightarrow x = 2 \mu$

V(x=2m) = - Area (OAB) = - 1 . 24. 200 7/m = - 200 V

- 1.3. (6pts) Three equal negative point charges are placed at three of the corners of a square of side d as shown in the figure. Which of the arrows represents the direction of the net electric field at the center of the square?
 - A) A
 - B) B
 - C) C
 - D) D

- 1.4. (6pts) Which spherical Gaussian surface has the larger electric flux?
 - A) Surface A
 - B) Surface B
 - C) They have the same flux
 - D) Not enough information to tell

1.5. (6pts) A +20 nC point charge is inside a hole in a conductor.

The conductor has a net charge of +50 nC.

What is the total charge on the inside surface of the conductor?

Answer:
$$9in = -20nC$$

b) What is the total charge on the outside surface of the conductor? Answer:

Problem 2. (20 pts)

An electric field $\vec{E} = 100,000 \,\hat{\imath} \, N/C$ causes the 5.0 g point charge to hang at a 20° angle. What is the charge on the ball?

Stodic equeilibrium a=0 N. 2nd low: I,F=ma, so I,F=0 => | I,Fy=0 2,Fx=0

1 Fe - Fr. ShiD=0 ← Fe=9E

pert a

Problem 3. (20 pts)

A very long solid nonconducting cylinder of radius R_0 and length L ($R_0 << L$) possesses a uniform volume charge density ρ (C/m^3). Determine the electric field as a function of r for

a) outside the cylinder $(r > R_0)$

Draw a Gaussian surface in the figure; Draw electric field and area vectors;

b) inside the cylinder $(r < R_0)$

Draw a Gaussian surface in the figure; (in one of the cases show how you handle a linear integral)

$$=E \cdot 2\pi r \cdot L = \frac{8ii}{\xi_0} = \frac{8ii}{\xi_0}$$

a) Similar, the el. flux is

$$E \cdot \partial T \cdot L = \frac{g_{in}}{\varepsilon_o}$$
; $g_{in} = \rho \cdot \nabla_R = \rho \cdot t R^2 \cdot L$
 $E \cdot \partial T \cdot L = \rho \cdot t R^2 \cdot L$
 $E(r) = \frac{\rho \cdot R^2}{2 \cdot \varepsilon \cdot r}$, $r > R_0$

Problem 4. (20 pts)

A proton's speed as it passes point A is 200,000 m/s. It follows the trajectory shown in the figure with a solid line. The dashed lines in the figure are equipotential lines. What is the proton's speed at point B?

Couserv. of energy:

$$E_a = E_6$$

 $K_a + U_a = K_6 + U_6$
 $U = g \cdot V$
 $K_a + g V_a = K_6 + g V_6$
 $K_6 = K_a + g (V_a - V_6)$

$$K_{\mathcal{B}} = K_{\alpha} + 9(V_{\alpha} - V_{\epsilon})$$

$$\frac{1}{2}mV_{\mathcal{B}}^2 = \frac{1}{2}mV_{\alpha}^2 + 9(V_{\alpha} - V_{\epsilon})$$

$$V_6 = \sqrt{V_a^2 + \frac{29}{44} (V_a - V_b)} = \sqrt{(200,000 \text{ M/s})^2 + \frac{2(1.6 \cdot 10^{-19} \text{C})}{1.67 \cdot 10^{-27} \text{Mg}}} (30V - (-10V))$$

$$V_6 = 218,300 \text{ M/s}$$

