Lecture 6

Chapter 25

The Electric Potential Energy

Course website:
http://faculty.uml.edu/Andriy_Danylov/Teaching/PhysicsII
Today we are going to discuss:

Chapter 25:

- Section 25.1 Electric Potential Energy
- Section 25.2 The potential energy of a point charge
New Idea

So far, we used vector quantities:

1. Electric Force (F)
 \[F_{2 \text{on} 1} = \frac{K|q_1||q_2|}{r^2} \]

2. Electric Field (E)
 \[\vec{E} = \frac{\vec{F}_{\text{on} q}}{q} \]

But, as you know, it is not easy to deal with vectors

Let’s introduce scalar quantities instead of a FORCE and FIELD
Let’s define a conservative force and give an idea of PE

Consider different paths between two points in a field

Recall for Physics I, a work done by a force

\[W = \int \vec{F} \cdot d\vec{s} \]

PE idea: That is what we have in our example. So, you can “attach” this number to the final point and give this number 5 a fancy name – the potential energy (PE) (U_f=5J) with respect to the initial point, where we can assume PE to be zero (the reference point).

For every conservative force a potential energy can be introduced.

Since the gravitational and electrical forces are conservative forces, corresponding potential energies can be introduced.
Since the gravitational force is a conservative force, a gravitational potential energy (scalar quantity) can be introduced.

\[U_{\text{grav}} = mg \]

This fall can be described using a gravitational force (vector quantity), which describes an interaction between the Earth and a cat.

\[F_{\text{grav}} = mg \quad \Rightarrow \quad U_{\text{grav}} = mgy \]

Since the gravitational force is a conservative force, a gravitational potential energy (scalar quantity) can be introduced.

The case of two point masses

\[F_G = G \frac{m_1 m_2}{r^2} \quad \Rightarrow \quad U_G = G \frac{m_1 m_2}{r} \]

The case of two point charges

\[F_e = k \frac{q_1 q_2}{r^2} \quad \Rightarrow \quad U(r) = \frac{k q_1 q_2}{r} \]
Potential energy is an energy of interaction, so there must be at least two interacting electric objects.
Potential energy of q in a uniform electric field (in a capacitor)
Potential energy of q in a uniform electric field

Consider a charge q inside a capacitor.

It moves from an initial point to a final point.

There is a constant force $F = qE$

The work done on q is:

$$W = \int_{i}^{f} \vec{F} \cdot d\vec{s} = q \int_{i}^{f} \vec{E} \cdot d\vec{s} = -q \int_{i}^{f} E ds = -qE \int_{i}^{f} ds = -qE(s_f - s_i)$$

Recall from Physics I

$$-\Delta U = W = \Delta K$$

$$-\Delta U = -(U_f - U_i) = -qE(s_f - s_i)$$

$$U_f - U_i = qEs_f - qEs_i$$

To get the most general expression, let’s introduce U_0, which is a potential energy at the reference point $s=0$

$$U_f - U_i = qEs_f + U_0 - U_0 - qEs_i$$

Electric potential energy of charge q and a charged capacitor

$$U = U_0 + qEs$$

It is convenient to choose the potential energy at the reference point $U_0 = 0$

$$U = qEs$$
ConcepTest

Two positive charges are equal. Which has more electric potential energy?

A) Charge A
B) Charge B
C) They have the same potential energy
D) Both have zero potential energy

\[U = qEs \]
Two negative charges are equal. Which has more electric potential energy?

A) Charge A
B) Charge B
C) They have the same potential energy
D) Both have zero potential energy

The potential energy of a negative charge decreases in the direction opposite to \vec{E}.

$$U = -|q|E_s$$
ConcepTest

A positive charge moves as shown. Its kinetic energy

A) Increases.
B) Remains constant.
C) Decreases.

The potential energy of a positive charge decreases in the direction of \vec{E}.

U increases $\Delta U > 0$

Total energy is constant $-\Delta U = \Delta K$

$\Delta K < 0$

K decreases

$U = qEs$

S
Potential energy of two point charges
The potential energy of two point charges

Electrostatic potential energy.

\[W = \int F_e \cdot dr = \int \frac{kqQ}{r^2} \, dr = kqQ \log \frac{r_0}{r} \]

We know that \(W = -\Delta U \); \(U \) - pot. energy, so

\[-[U(r) - U_0] = -\left[\frac{kqQ}{r} - \frac{kqQ}{r_0} \right] \]

As you remember, only differences in \(U \) have physical meaning. So we are free to choose any reference point. It's common to choose \(U(r) \) to be zero at \(r = \infty \).

Ref. point \(r_0 \to \infty \); \(U_0 = 0 \), so

\[U(r) - U_0 = \frac{kqQ}{r} - \frac{kqQ}{r_0} \]

Finally,

\[U(r) = \frac{kqQ}{r} \]

pot. energy of the system of two charges \(Q, q \).

This is explicitly the energy of the system, not the energy of just \(q \) or \(Q \).

Note that the potential energy of two charged particles approaches zero as \(r \to \infty \).
ConcepTest Potential energy

A positive and a negative charge are released from rest in vacuum. They move toward each other. As they do:

A) A positive potential energy becomes more positive.
B) A positive potential energy becomes less positive.
C) A negative potential energy becomes more negative.
D) A negative potential energy becomes less negative.
E) A positive potential energy becomes a negative potential energy.

\[U(r) = \frac{kqQ}{r} \]

Opposite signs, so \(U \) is Negative.

\(U \) increases in magnitude as \(r \) decreases.
A proton is fired from far away at a 1.0-mm-diameter glass sphere that has been charged to +100 nC. What initial speed must the proton have to just reach the surface of the glass?

Example 25.2

\[
\begin{align*}
U_i &= \frac{kqQ}{r} = 0 \\
K_i &= \frac{1}{2}mv_0^2; \\
U_f &= \frac{kqQ}{R} \\
K_f &= 0 \\
\text{it reaches with } U_f = 0
\end{align*}
\]

Total energy is conserved, i.e.

\[
K_i + U_i = K_f + U_f
\]

\[
\frac{1}{2}mv_0^2 = \frac{kqQ}{R} \quad \Rightarrow \quad v_0 = \sqrt{\frac{2kqQ}{mR}} = 1.86 \times 10^7 \text{ m/s}
\]
Thank you

Bye Bye For Now
Ok, now we know the PE expression of a charge inside of a capacitor. Let’s play with that expression to see where PE is larger or smaller, etc.

Potential energy of a positive charge, +q

\[U = qEs \]

If +q moves in the direction of E, then \(\Delta U < 0 \)

If we use Conservation of energy

\[-\Delta U = W = \Delta K \]

We will get \(\Delta K > 0 \) \(\Rightarrow K_{-\text{plate}} > K_{+\text{plate}} \)

The charge gains kinetic energy as it moves toward the negative plate.
Potential energy of a positive charge, \(-q\)

Since, the charge is negative, let’s rewrite \(U\) in this form:

\[
U = -|q|Es
\]

If \(-q\) moves in the direction opposite of \(E\), then \(\Delta U < 0\)

If we use conservation of energy:

\[
-\Delta U = W = \Delta K
\]

We will get \(\Delta K > 0\) \(\Rightarrow\) \(K_{+\text{plate}} > K_{-\text{plate}}\)

The charge gains kinetic energy as it moves away from the negative plate.

From these two examples, you see that PE can be used to analyze motion instead of force.