Lecture 11

Chapter 8

Centripetal Force

Today we are going to discuss:

Chapter 8:

> Uniform Circular Motion: Section 8.2
\rightarrow Circular Orbits: Section 8.3
$>$ Reasoning about Circular Motion: Section 8.4

Let's recall circular motion (accelerations)

The tangential acceleration causes the particle to change speed.

acceleration causes the particle to change direction.

PHYS. 1410 Lecture 11 Danylou
Department of Physics and Applied Physics

The best coordinate system

for a Uniform Circular Motion

When describing circular motion, it is convenient to define a moving rt-coordinate system.

The r-axis (radial) points from the particle toward the center of the circle.

The t-axis (tangential) is tangent to the circle, pointing in the ccw direction.

The origin moves along with a certain particle moving in a circular path.

If there is an acceleration, there must be a force

The figure shows a particle in uniform circular motion.
If there is an centripetal (radial) acceleration, there must be a radial force (called centripetal) according to N. $2^{\text {nd }}$ law.

$$
\sum F_{r}=m a_{r} \Rightarrow \quad \sum F_{r}=\frac{m v^{2}}{r}
$$

The net force points in the radial direction, toward the center of the circle.

This centripetal force is not a new force. This can be any one of the forces we have already encountered: tension, gravity, normal force, friction, ...

Examples

Bike going in a circle: the wall exerts an inward force (normal force) on a bike to make it move in a circle.

$$
\sum F=m a_{r} a_{r}=\frac{v^{2}}{R} \quad N=\frac{m v^{2}}{R}
$$

v-velocity of the motorbike
R- radius of the circle
Normal force provides the centripetal acceleration
https://www.youtube.com/watch?v=9H4jUptw4Vk

A hammer going in a circle: the cord exerts an inward force (tension) on a hammer to make it move in a circle.

$$
\sum F=m a_{r} \Rightarrow T=\frac{m v^{2}}{R}
$$

Tension provides the centripetal acceleration

Car going in a circle:
the road exerts an inward force (friction)
on a car to make it move in a circle.

Friction provides the centripetal acceleration

ConcepTest

A Ping-Pong ball is shot into a circular tube that is lying flat (horizontal) on a tabletop. When the Ping-Pong ball leaves the track, which path will it follow?

Once the ball leaves the tube, there is no longer a force to keep it going in a circle. Therefore, it simply continues in a straight line, as Newton's First Law requires!

Example GLop the Loop

a) To make the loop-the-loop at a constant speed, what minimum speed does the car need?
b) Find an apparent weight at the bottom.
a) Draw a free body diagram for a car at the top N. and law for a radial direction:

$$
\begin{aligned}
& \sum_{1} F_{r}=m a_{r}<a_{r}=\frac{v^{2}}{R} \\
& N+m g=m \frac{v^{2}}{R} \Rightarrow \| v=\sqrt{\frac{R}{m}(N+m g)}
\end{aligned}
$$

The en'tical speed occurs when we are ready
 to start falling down, i.e. losing contact with the wall $(N=0)$.

$$
v_{\min }=\sqrt{\frac{R}{m}(N+m g)}=\sqrt{g \cdot r}
$$

b) Apparent weight -? (i.e N-?) at the bottom.

$$
\sum_{1} F_{r}=m a_{r} \Rightarrow N-m g=m \cdot \frac{v^{2}}{R} \Rightarrow\left\|N=m g+m \frac{v^{2}}{R}\right\|
$$

Thus, $N>$ mg, You would feel heavier (similar to a case when a person is in an elevator)

ConcepTest

You're on a Ferris wheel moving in a vertical circle. When the Ferris wheel is at
A) N remains equal to mg rest, the normal force N exerted by your seat is equal to your weight mg . How does N change at the top of the Ferris wheel when you are in motion?
B) N is smaller than mg
C) N is larger than mg
D) none of the above

$$
\begin{array}{ll}
m g-N=m \frac{v^{2}}{R} & m g-m \frac{v^{2}}{R}=N \\
\hline
\end{array}
$$

You are in circular motion, so there has to be a centripetal force pointing inward. At the top, the only two forces are $m g$ (down) and N (up), so N
must be smaller than mg .
Follow-up: Where is N larger than mg ?
Bottom

$$
N-m g=m \frac{v^{2}}{R} \quad N=m g+m \frac{v^{2}}{R}
$$

ConcepTest

Going in Circles

A skier goes over a small round hill with
A) $F_{c}=N+m g$
B) $F_{c}=m g-N$
C) $F_{c}=T+N-m g$
D) $F_{c}=N$
E) $F_{c}=m g$

Example Car on a circular flat road

What is the maximum speed with which a $1200-\mathrm{kg}$ car can round a turn of radius 80 m on flat road if the coefficient of static friction between tires and road is 0.65 ? Is the result independent of the mass of the car?

(3) The radial force required to keep the cor in the curved path is supplied by the force of static friction between the tires and the road.
The max static friction force is

$$
f_{s}^{m o x}=\mu_{s} \cdot N=\mu_{s} \cdot m g
$$

${ }^{F_{A}}$ In this case the car would be on a verge of skidding. Let's find the speed corresponding to this centripetal force (f_{s} mex) and that would be the max speed.
(1). Ind law in the redirection

$$
\begin{gathered}
\sum_{1} F_{r}=m Q_{r} \Rightarrow f_{s}^{\text {max }}=m \frac{v_{\text {max }}^{2}}{R} \\
\mu_{s} \cdot m x \cdot g=m \cdot \frac{v_{\text {max }}^{2}}{R} \Rightarrow\left\|v_{\text {max }}=\sqrt{\mu_{s} \cdot g R}\right\|=\sqrt{0.65 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 80 \mu}=22.6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

It's independent of the car's mass.

ConcepTest

You drive your car too fast around a curve and the car starts to skid. What is the correct description of this situation?
A) car's engine is not strong enough to keep the car from being pushed out
B) friction between tires and road is not strong enough to keep car in a circle
C) car is too heavy to make the turn
D) a deer caused you to skid
E) none of the above

The friction force between tires and road provides the centripetal force that keeps the car moving in a circle. If this force is too small, the car continues in a straight line!

Follow-up: What could be done to the road or car to prevent skidding?

Examples. Banked curve

$>$ But sometimes, friction force is not enough to keep a car on a circular road.
$>$ Banking the curve can help to keep cars from skidding.

Banked Curves (solution)

r component of normal force provides the centripetal acceleration
http://phys23p.sl.psu.edu/phys anim/mech/car banked new.avi

Department of Physics and Applied Physics

Example: Conical pendulum

r component of tension provides the centripetal acceleration

