Soft Electronic Organic Materials

Sanjeev K. Manohar

Associate Professor

Department of Chemical Engineering

Engineering 106

978-934-3162 sanjeev_manohar@uml.edu www.frontiermaterials.net

Outline

Introduction to electronic materials (nano/bio)

Biomedical applications using electronic materials

What is a nano-material?

A material consisting of a substance or structure which exhibits at least one dimension < 100 nm.

For comparison, a human hair is ~50,000 nm; visible light, ~ 400 - 700 nm.

Selected Examples of Technological Applications of Nano-structured Materials

- Light-Emitting Devices (LEDs)
- Anti-static coating on photographic film
- Corrosion prevention of metals
- Energy Storage (batteries, capacitors)
- Electromagnetic interference (EMI) shielding
- Anti-static floor tiles, carpets, shoe soles, etc.
- Hydrogen storage
- Transparent electrodes in liquid crystal displays
- Non-linear (NLO) devices

- Stealth (e.g., radar) avoidance systems
- Gas separation membranes
- Biochemical sensors (e.g., for glucose)
- Sensors for volatile organics (VOCs)
- Solar cells
- Drug releasing polymers
- "Plastic chips"
- Inexpensive, "throw-away" electronic devices (with possibly smaller efficiency, precision, lifetime, etc.)
 than conventional electronic devices
- All-plastic electronic motors

Electronic Organic Polymers (plastics that conduct electricity)

Carbon Nanotubes

Graphene

Endotoxin detector

Introduction to Plastics that Conduct Electricity

Synthetic Metals
Intrinsically conducting polymers
Electronic organic polymers
Inherently conductive polymers
Electronic plastics
'Dirty metals'

Conducting Polymers

"Synthetic Metals"

 Electronic, Magnetic, Optical Properties of a Metal.

 Mechanical Properties, Processability, etc., of a conventional polymer.

Conductivity increases with increased doping

What is Conductivity?

Conductivity is the Flow of Charge

Metals are good conductors

Simple model for metal conduction

Plastics as Insulators

Why are plastics good insulators?

1. They don't have a pathway to carry current.

2. They don't have any charge to carry current

Modification of Plastics

Make a pathway

Create current carriers

The Idea

Benzene

3 single bonds

3 double bonds

Now, how do you introduce charge?

Idea...creating charge in the plastic

Electricity travels along the chain

World's first conductive plastic! 1977

HC==CH

Welding gas, acetylene

Flow, or pathway

"Poly" acetylene insulating

charge

"Poly" acetylene.... conducting

Conductivity: 34 S/cm (1977); 150,0000 S/cm (2004)

Y2K Nobel Prize in Chemistry

Alan Heeger Alan MacDiarmid Hideki Shirakawa

Electronic (Organic) Polymers

Non-Doped: Semiconductors/Insulators

Doped: "Metals"

(Conducting Polymers: "Synthetic Metals")

- Organic Polymers
 - Electrically Insulating
 - Electrically conducting
- The Concept of Doping of an Organic Polymer (to increase its conductivity to the metallic regime)
- Redox Doping
 - p-doping
 - -- chemical
 - --electrochemical
 - n-doping
 - -- chemical
 - -- electrochemical
- Non-redox Doping: The Polyanilines
- Technological Applications

Concept of Doping of Organic Polymers

- Doping:
 - The unique, central, underlying and unifying theme in conducting polymers
- Controlled addition of known, small (<10%), non-stochiometric quantities of chemical species results in dramatic changes in electronic, optical, and structural properties of the polymer
- Doping is reversible (No degradation of the polymer "backbone")
- Doping and undoping by either chemical or electrochemical methods
- ALSO:
 - "Photo-doping" (Transitory: no chemical species added)
 - •"Charge Injection Doping" (Transitory: no chemical species added)

Polyacetylene* "The Prototype Conducting Polymer"

0.5x HC≡CH

cis- (CH)_x
Silvery films
(semiconductor)

~150 °C

trans- (CH)_x

Silvery films

(semiconductor)

^{*} H. Shirakawa and S. Ikada, *Polym. J., 2*, 231 (1971).

Redox Doping*

(Increase or decrease number of electrons on the polymer backbone) p-Doping (partial oxidation of the π -system)

Polyacetylene (The prototype conducting polymer)

Chemical Doping

trans- (CH)_x +
$$3/2(xy)$$
 I₂
$$\sigma \sim 10^{-5} \text{ S/cm}$$
 [(CH^{+y})(I₃⁻)_y]_x
$$\sigma \sim 10^{-5} \text{ S/cm}$$

$$\sigma \sim 10^{-5} \text{ S/cm}$$

A positive soliton (~15 CH units)

Anode

Electrochemical Doping

trans- (CH)_x + (xy) (CIO₄) -
$$\longrightarrow$$
 [(CH+y) (CIO₄)_y -+ (xy) e $^ y \le \sim 0.1$

 $v \leq \sim 0.1$

Redox Doping (cont'd)

n-Doping (partial reduction of the π -system)

Polyacetylene

Chemical Doping

trans- (CH)_x + (xy) Na/Hg
$$\longrightarrow$$
 [Na_y+(CH-y)]_x $y \le \sim 0.1$
 $\sigma \sim 10^{-5}$ S/cm $y \le \sim 0.1$

Cathode

Electrochemical Doping

trans- (CH)_x + (xy) Li⁺ + (xy) e⁻
$$\rightarrow$$
 [(CH^{+y}) (CIO₄)_y - y \leq ~0.1
 σ ~ 10 ⁻⁵ S/cm

Redox Doping (cont'd)

Other examples of redox-dopable polymers

(chemical and/or electrochemical)

Z = NH, NR, S, O, etc.

Carbon Nanotubes

What are Carbon Nanotubes?

Graphite, sp²

Fullerene, C₆₀, sp²

Diamond, sp³

Nanotubes, sp²

What are Carbon Nanotubes?

• A graphene sheet rolled up into a cylinder.....

Single vs. Multi Walled Carbon Nanotubes

- Single-wall carbon nanotube: Tubes closed at the ends by half-fullerenes
- ➤ Multi-walled carbon nanotube: A concentric arrangement of many tubes

Metallic and Semiconducting SWNTs

- Metallic tubes: Optoelectronic displays, transparent conductors, and chemiresistors
- Semiconducting tubes: Switching devices like transistors, diodes and sensors (chem-FETs)

Wrapping (10,0) SWNT (zigzag)

Wrapping (10,0) SWNT (zigzag)

Wrapping (10,10) SWNT (armchair)

Wrapping (10,10) SWNT (armchair)

Wrapping (10,5) SWNT (chiral)

Wrapping (10,5) SWNT (chiral)

Interesting Properties of Carbon Nanotubes

- > 1nm in diameter, up to 1cm in length, aspect ratio of 10⁷
- > 1 defect in 10¹² C atoms => ballistic conduction
- ➤ High melting point ~3800°C
- ➤ High young's modulus 1TPa (10³ times diamond)
- ➤ High electronic current carrying capacity (10⁹A/cm²) ~10³ times higher than that of the noble metals
- ➤ Thermal conductivity 6600W/mK at room temperature is twice the maximum known bulk thermal conductor, isotropically pure diamond = 3320W/mK

Potential Applications of Carbon Nanotubes

Graphene oxide and reduced graphene oxide

Isolation of single layer graphene sheet (2004)

Graphite (3D)

Graphene (2D) (2004)

Limited yield.....

Chemical methods......

Mechanical exfoliation - (repeated peeling) of highly ordered graphite using scotch tape

Manufacturing Center of Excellence

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. *Science* **2004**, *306*, 666-69

Synthesis of reduced graphene oxide from graphite

Park, S.; Ruoff, R. S., Chemical Methods for the Production of Graphenes. *Nature Nanotechnology* **2009**, *4*, 217-24 Hummers, W. S., Jr.; Offeman, R. E., Preparation of Graphitic Oxide. *Journal of the American Chemical Society* **1958**, *80*, 1339 Staudenmaier, L., Preparation of Graphitic Acid. *Berichte der Deutschen Chemischen Gesellschaft* **1898**, *31*, 1481-70

Synthesis of graphene oxide (Hummers method)*

*Hummers, W. S., Jr.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80, 1339

Graphene oxide dispersion

Graphene oxide is readily inkjet printed on PET, paper, etc., using commercial printers

Graphene oxide dispersion in water

- 1. Empty inkjet commercial cartridge
- 2. Fill cartridge with graphene oxide dispersion

Inkjet print using commercial printer on paper or plastic

Free-standing films of inkjet printed graphene oxide lift off a PET substrate

Immerse in water

Ascorbic acid readily converts graphene oxide to reduced graphene oxide

Graphene oxide Reduced graphene oxide

Pressed pellet conductivity 15 S/cm Vitamin C reduced is similar to hydrazine reduced graphene

Free-standing film of reduced graphene oxide readily obtained by ascorbic acid treatment

XPS: Fewer defects observed using ascorbic acid as the reducing agent

Reduced graphene oxide

TGA: Reduced graphene oxide powder obtained by ascorbic acid and hydrazine reduction are similar

Vitamin C reduced graphene is similar to hydrazine reduced graphene

An electronic ink of reduced graphene oxide is readily obtained as an aqueous surfactant supported dispersion

Reduced graphene oxide (10 mg) in water

Triton-X-100; n = 9-10

Reduced graphene oxide dispersion

Reduced graphene oxide

- Bath sonicate (20 min)
- Probe sonicate (5x5 min)

Reduced graphene oxide is readily inkjet printed on PET

- 1. Empty inkjet commercial cartridge
- 2. Fill cartridge with graphene oxide dispersion

Reduced graphene oxide dispersion

Inkjet print using commercial printer on paper or plastic

Rapid Endotoxin Detector for the Global Industrial Microbiological Market

VALUE PROPOSITION:

An inexpensive, easy-to-use, hand-held instantaneous endotoxin detection system for industrial and medical applications that requires little to no pre-treatment of samples

Urgent and unmet market need

- ✓ Testing for endotoxins is now mandatory for every medical device
- ✓ Global industrial microbiological market 1.5 B tests (~\$4.5 B)
 - Beverage, food processing, pharma, personal care, industrial processes & environmental
- ✓ Endotoxins also cause septicemia (sepsis)
 - ✓ 2 million/yr lives lost in the US ~\$17 billion
 - √ No direct test to detect endotoxins in blood
- ✓ Existing test is based on using blood from horseshoe crab (LAL test)
 - ✓ Slow, cumbersome (takes days for a single test)
 - ✓ Costly (1 quart of horseshoe crab blood ~\$15,000, revenues ~\$100 million)
 - ✓ Horseshoe crab blood population declining

Urgent and unmet market need

- ✓ Urgent need for a fast, low cost, endotoxin detection system
 - ✓ Current revenues from rapid microbiology test systems ~\$200 million/yr

✓ Customers- US Pharma (USP), US FDA, DHS and the entire industrial microbiological sector

✓ End-users - Amgen, Genentech, Genzyme, Biogen Idec (& others), Homeland Security, Hospitals

✓ Potential licensees - Lonza Group, Charles River, Bio Test, BioDtech (BDTI) and Associates of Cape Cod (ACC)

Our new technology

- ✓ Identified novel chemistry between endotoxins and antifungals:
 - ✓ Antifungals large class of polyene macrolides
 - ✓ Instantaneous complex formed between endotoxins can antifungals

Antifungal – amphotericin-B

Endotoxins 53

Our new technology....cont'd

- ✓ Interrogate this novel chemistry in 3 different ways:
 - ✓ Optical (instantaneous 1ppt level detection)
 - ✓ Electrical (using carbon nanotubes)
 - ✓ Electrochemical (using conducting polymers)
 - ✓ Provisional patent application filed 02/09/2011 covering all 3 detection methods

Our new technology....cont'd

- ✓ Signal change is near instantaneous (optical), or within 2-5 min significant advantage vs. horseshoe crab blood test (takes days)
- ✓ Signal is very selective to endotoxins significant advantage vs. horseshoe crab blood test (sensitive to interferents)
- ✓ Detection limit is at 0.001 EU/ml (parity with horseshoe crab blood test) with potential to be lowered even further

VALUE PROPOSITION:

An inexpensive, easy-to-use, hand-held instantaneous endotoxin detection system for industrial and medical applications that requires little to no pre-treatment of samples

Maturity of our technology

- √ Validated in laboratory environment (all 3 detection methods)
- ✓ Both optical detection methods already at 0.001 EU/ml (best of class)
- ✓ Electrical detection using carbon nanotubes at 2-10 EU/ml (lower using UML's inkjet printing technology)
- ✓ Electrochemical detection using conducting polymers at 0.5 EU/ml (lower using UML's oligomer synthesis methodology)
- ✓ Tolerates a wide range of potential interferents

PROOF-OF CONCEPT:

Established. Need to lower detection limits further for electrical & electrochemical methods (use of seed fund)

Benchmarking vs. competition

Desired Properties	${f LAL^1}$	Charles River ²	Dimer-AmB Electrochemical	r-GO-AmB Chemiresistor	Optical
Toxin Response	• Excellent	• Excellent	● Good	• Excellent	• Excellent
Sensitivity ³	● 0.005EU/ml	●0.02EU/ml	O 0.5EU/ml	• 0.05Eu/ml	● 0.001EU/ml
Interferents	0	•	•	•	• Excellent
Response time	○ 72hrs	O 15min	• 1 min	● 45 sec	●5min
Startup time	O Poor	● <1min	● < 1 min	● <1min	● <1min
Portable	○ No	• Yes	O Yes	• Yes	• Yes
Operator skills	O High Skills	• On/Off	On/Off	On/Off	• On/Off
Environments	O Clean room	Robust	0	Robust	● Robust
Unit cost	○ Expensive	O Expensive	○ <\$200	● <\$20	•

¹Horseshoe crab assay, the industry standard. It is costly, time consuming and cumbersome (but very sensitive). ²New fluorescence based commercial detector (2009). ³1EU/ml=100 pg/ml.

Endotoxin detection platform technology

FIRST MARKET (INDUSTRIAL): Manufacturing Quality Control (1-3 Yrs)

Pharmaceutical, medical device, food, and beverage industries all require endotoxin testing for safety of their products.

UML Solution: Inexpensive, hand-held sensors that can be taken to the manufacturing site for instant readings without need for sterile procedure or sample preparation. In-line sensors for water supply systems with alarms

\$25K SEED FUNDING WILL BE USED TO:

- **▶**Increase the sensitivity of the 2 electrical methods
- **▶** Make a breadboard demonstrator
- >Attract a licensee for industrial applications
- > From the basis of a second product (clinical)

SECOND MARKET (CLINICAL): Diagnostics (3-6 years)

There are over 750,000 cases of sepsis each year in the United States with 28-50% being fatal

UML Solution: Array detector that can detect sepsis-causing endotoxins in whole blood and determine organism responsible, allowing proper drugs to be administered

Technology transfer plan

Development team

Members	Affiliation	Function
Sanjeev K. Manohar	UMass Lowell Chemical Engineering	 Improve sensitivity of electrical and electrochem methods Improve selectivity using wider range of antifungals (sensor array)
Dr. Stephen Heard	UMass Medical Center Anesthesiology	➤ Validation under realistic conditions ➤ Test for detector fouling
Dr. Steve Tello	UMass Lowell College of Management	➤ Prepare the technology for the "Venture Project"

Rapid Endotoxin Detector for the Global Industrial Microbiological Market

Dr. Sanjeev K. Manohar

Associate Professor Chemical Engineering UMass Lowell

VALUE PROPOSITION:

An inexpensive, easy-to-use, hand-held instantaneous endotoxin detection system for industrial and medical applications that requires little to no pre-treatment of samples