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Abstract

Let C ⊆ X be a nonempty subset of an arbitrary set X and f : X → R.
The problem is to minimize f over C. In auxiliary-function (AF) minimization
we minimize Gk(x) = f(x) + gk(x) over x in C to get xk, where gk(x) ≥ 0 for
all x and gk(x

k−1) = 0. Then the sequence {f(xk)} is nonincreasing. A wide
variety of iterative optimization methods are either in the AF class or can be
reformulated to be in that class, including forward-backward splitting, barrier-
function and penalty-function methods, alternating minimization, majorization
minimization (optimality transfer), cross-entropy minimization, and proximal
minimization methods. In order to have the sequence {f(xk)} converge to β,
the infimum of f(x) over x in C, we need to impose additional restrictions. An
AF algorithm is said to be in the SUMMA class if, for all x in C, we have the
SUMMA Inequality: Gk(x) − Gk(xk) ≥ gk+1(x). Then {f(xk)} ↓ β. Here we
generalize the SUMMA Inequality to obtain a wider class of algorithms that
also contains the proximal minimization methods of Auslender and Teboulle.
Algorithms are said to be in the SUMMA2 class if there are functions hk : X →
R+ such that hk(x) − hk+1(x) ≥ f(xk) − f(x) for all x in C. Once again, we
have {f(xk)} ↓ β.

Key Words: Sequential unconstrained minimization; forward-backward split-
ting; proximal minimization; Bregman distances.
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1 Introduction

1.1 The Basic Problem

The basic problem we consider in this paper is to minimize a function f : X → R
over x in C ⊆ X, where C is an arbitrary nonempty subset of a set X. Until it is
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absolutely necessary, we shall not impose any structure on X or on f . One reason for

avoiding structure on X and f is that we can actually achieve something interesting

without it. The second reason is that when we do introduce structure, it will not

necessarily be that of a metric space; for instance, cross-entropy and other Bregman

distances play an important role in some of the iterative optimization algorithms to

be discussed here.

1.2 Sequential Minimization

The algorithms we consider are of the sequential minimization type. For k = 1, 2, ...

we minimize the function

Gk(x) = f(x) + gk(x) (1.1)

over x in C to get xk. An iterative algorithm is said to be an interior-point algorithm

if xk ∈ C for all k. Many of the algorithms to be discussed here, including barrier-

function methods, are interior-point algorithms. There are several ways to guarantee

that xk be in C. One way is to select gk(x) to be finite only within C. Another way

is simply to minimize Gk(x) only over C; if C is a proper subset of X we can replace

f(x) with f(x) + ιC(x), where ιC(x) = 0, for x ∈ C, and ιC(x) = +∞, otherwise. An

iterative algorithm is said to be an exterior-point algorithm if xk is outside C for all

k, and only the limit, if it exists, is in C. Penalty-function methods are exterior-point

methods.

While the functions gk(x) may be used to incorporate the constraint that f(x) is

to be minimized over x ∈ C, the gk(x) can also be selected to make the computations

simpler; sometimes we select the gk(x) so that xk can be expressed in closed form.

However, in the most general, non-topological case, we are not concerned with calcu-

lational issues involved in finding xk. Our objective is to select the gk(x) so that the

sequence {f(xk)} converges to β = inf{f(x), x ∈ C}.

1.3 Auxiliary-Function Methods

We shall say that the functions gk(x) are auxiliary functions if they have the properties

gk(x) ≥ 0 for all x ∈ X, and gk(x
k−1) = 0. We then say that the sequence {xk}

has been generated by an auxiliary-function (AF) method. We have the following

proposition.

Proposition 1.1 If the sequence {xk} is generated by an AF method, then the se-

quence {f(xk)} is nonincreasing and converges to some β∗ ≥ −∞.
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Proof: We have

Gk(x
k−1) = f(xk−1) + gk(x

k−1) = f(xk−1)

≥ Gk(x
k) = f(xk) + gk(x

k) ≥ f(xk),

so f(xk−1) ≥ f(xk).

In order to have the sequence {f(xk} converging to β = inf{f(x)|x ∈ C} we need

to impose additional restrictions.

Perhaps the best known examples of AF methods are the sequential unconstrained

minimization (SUM) methods discussed by Fiacco and McCormick in their classic

book [23]. They focus on barrier-function and penalty-function algorithms, which

are not usually presented in AF form, but can be reformulated as members of the

AF class. A wide variety of iterative optimization methods are either in the AF

class or can be reformulated to be in that class, including forward-backward splitting,

barrier-function and penalty-function methods, alternating minimization, majoriza-

tion minimization (optimality transfer), cross-entropy minimization, and proximal

minimization methods.

A barrier function has the value +∞ for x not in C, while the penalty function

is zero on C and positive off of C. In more general AF methods, we may or may not

have C = X. If C is a proper subset of X, we can replace the function f(x) with

f(x) + ιC(x), where ιC(x) takes on the value zero for x in C and the value +∞ for x

not in C; then the gk(x) need not involve C.

1.4 The SUMMA Class

Simply asking that the sequence {f(xk)} be nonincreasing is usually not enough. We

want {f(xk)} ↓ β = infx∈C f(x). This occurs in most of the examples mentioned

above. In [9] it was shown that, if the auxiliary functions gk are selected so as to

satisfy the SUMMA Inequality,

Gk(x)−Gk(x
k) ≥ gk+1(x), (1.2)

for all x ∈ C, then β∗ = β. Although there are many iterative algorithms that satisfy

the SUMMA Inequality, and are therefore in the SUMMA class, some important

methods that are not in this class still have β∗ = β; one example is the proximal

minimization method of Auslender and Teboulle [1]. This suggests that the SUMMA

class, large as it is, is still unnecessarily restrictive.

One consequence of the SUMMA Inequality is

gk(x)− gk+1(x) ≥ f(xk)− f(x), (1.3)

3



for all x ∈ C. It follows from this that β∗ = β. If this were not the case, then there

would be z ∈ C with

f(xk) ≥ β∗ > f(z)

for all k. The sequence {gk(z)} would then be a nonincreasing sequence of nonnegative

terms with the sequence of its successive differences bounded below by β∗−f(z) > 0.

In order to widen the SUMMA class to include, among other algorithms, the proximal

minimization method of Auslender and Teboulle, we shall focus on generalizing the

inequality (1.3).

1.5 The SUMMA2 Class

An AF algorithm is said to be in the SUMMA2 class if, for each sequence {xk}
generated by the algorithm, there are functions hk : C → R+ such that, for all x ∈ C,

we have

hk(x)− hk+1(x) ≥ f(xk)− f(x). (1.4)

Any algorithm in the SUMMA class is in the SUMMA2 class; use hk = gk. As in the

SUMMA case, we must have β∗ = β, since otherwise the successive differences of the

sequence {hk(z)} would be bounded below by β∗ − f(z) > 0. It is helpful to note

that the functions hk need not be the gk, and we do not require that hk(x
k−1) = 0.

As we shall show, the proximal minimization method of Auslender and Teboulle [1]

is in the SUMMA2 class. It is natural to ask if there are algorithms in the SUMMA2

class that are not in SUMMA and are not in the class defined by Auslender and

Teboulle. There are such algorithms; as we shall show, the expectation maximization

maximum likelihood (EMML) [33, 4, 5, 6], as it is usually formulated, is such an

algorithm.

2 Examples of AF Algorithms

In this section we consider several examples of AF methods.

2.1 Proximal Minimization

Let d : X × X → R+ be a “distance”, meaning simply that d(x, y) = 0 if and only

if x = y. An iterative algorithm is a proximal minimization algorithm (PMA) if, for

each k, we minimize

Gk(x) = f(x) + d(x, xk−1) (2.1)
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to get xk. Clearly, any method in the PMA class is also an AF method.

2.2 Majorization Minimization

The majorization minimization (MM) method in statistics [26, 18], also called opti-

mization transfer, is not typically formulated as an AF method, but it is one. The MM

method is the following. Assume that there is a function g(x|y) ≥ f(x), for all x and

y, with g(y|y) = f(y). Then, for each k, minimize g(x|xk−1) to get xk. The MM meth-

ods and the PMA methods are equivalent; given g(x|y), define d(x, y)
.
= g(x|y)−f(x)

and given d(x, y), define g(x|y)
.
= f(x) + d(x, y).

In [18] the authors give the following example of an MM method. Given finitely

many nonempty, closed, convex subsets of RJ , denoted Ci, i = 1, ..., I, the convex fea-

sibility problem (CFP) is to find a member of their intersection. When the intersection

is empty, we minimize the function

f(x) =
I∑
i=1

‖x− PCi
x‖2, (2.2)

where PCi
x denotes the orthogonal projection of x onto the subset Ci. Using the MM

method, they minimize instead the function

g(x|xk−1) =
I∑
i=1

‖x− PCi
xk−1‖2, (2.3)

to get xk. This is an MM method because

‖x− PCi
x‖ ≤ ‖x− PCi

xk−1‖,

for all x. The iterative algorithm generated in this way has the iterative step

xk =
1

I

I∑
i=1

PCi
xk−1, (2.4)

which can also be written as a gradient-descent method,

xk = xk−1 −∇f(xk−1). (2.5)

2.3 PMA with Bregman Distances

Let H be a Hilbert space, and h : H → R strictly convex and Gâteaux differentiable.

The Bregman distance associated with h is

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉. (2.6)
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Proximal minimization with Bregman distances (PMAB) applies to the minimization

of a convex function f : H → R. In [13, 14] Censor and Zenios discuss in detail the

PMAB methods, which they call proximal minimization with D-functions.

Minimizing Gk(x) = f(x) +Dh(x, x
k−1) leads to

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1),

where

∂f(x) = {u|f(y)− f(x)− 〈∇u, y − x〉 ≥ 0, for all y}

is the subdifferential of f at x. In [9] it was shown that for the PMAB methods we

have uk ∈ ∂f(xk) such that

Gk(x)−Gk(x
k) = f(x)− f(xk)− 〈uk, x− xk〉+Dh(x, x

k) ≥ gk+1(x), (2.7)

for all x. Consequently, the SUMMA Inequality holds and all PMAB algorithms are

in the SUMMA class.

2.4 The Forward-Backward Splitting Methods

The forward-backward splitting (FBS) methods discussed by Combettes and Wajs

[19] form a particular subclass of the PMAB methods. The problem now is to min-

imize the function f(x) = f1(x) + f2(x), where both f1 : H → (−∞,+∞] and

f2 : H → (−∞,+∞] are lower semicontinuous, proper and convex, and f2 is Gâteaux

differentiable, with L-Lipschitz continuous gradient. Before we describe the FBS

algorithm we need to recall Moreau’s proximity operators.

Following Combettes and Wajs [19], we say that the Moreau envelope of index

γ > 0 of the closed, proper, convex function f : H → (−∞,∞], or the Moreau

envelope of the function γf , is the continuous, convex function

envγf (x) = inf
y∈H
{f(y) +

1

2γ
||x− y||2}; (2.8)

see also Moreau [27, 28, 29]. In Rockafellar’s book [30] and elsewhere, it is shown

that the infimum is attained at a unique y, usually denoted proxγf (x). Proximity

operators generalize the orthogonal projections onto closed, convex sets. Consider

the function f(x) = ιC(x), the indicator function of the closed, convex set C, taking

the value zero for x in C, and +∞ otherwise. Then proxγf (x) = PC(x), the orthogonal

projection of x onto C. The following characterization of x = proxf (z) is quite useful:

x = proxf (z) if and only if z − x ∈ ∂f(x).
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In [19] the authors show, using the characterization of proxγf given above, that x

is a solution of this minimization problem if and only if

x = proxγf1(x− γ∇f2(x)). (2.9)

This suggests to them the following FBS iterative scheme:

xk = proxγf1(x
k−1 − γ∇f2(xk−1)). (2.10)

Basic properties and convergence of the FBS algorithm are then developed in [19].

In [11] we presented a simplified proof of convergence for the FBS algorithm. The

basic idea used there is to formulate the FBS algorithm as a member of the PMAB

class. An easy calculation shows that, if we minimize

Gk(x) = f1(x) + f2(x) +
1

2γ
‖x− xk−1‖2 −Df2(x, x

k−1), (2.11)

we get xk as described in Equation (2.10). The function

h(x) =
1

2γ
‖x‖2 − f2(x)

is convex and Gâteaux differentiable, when 0 < γ ≤ 1
L

, and

Dh(x, x
k−1) =

1

2γ
‖x− xk−1‖2 −Df2(x, x

k−1).

Therefore, the FBS method is in the PMAB class. A number of well known iterative

algorithms are particular cases of the FBS.

2.5 Projected Gradient Descent

Let C be a nonempty, closed convex subset of RJ and f1(x) = ιC(x), the function that

is +∞ for x not in C and zero for x in C. Then ιC(x) is convex, but not differentiable.

We have proxγf1 = PC , the orthogonal projection onto C. The iteration in Equation

(2.10) becomes

xk = PC
(
xk−1 − γ∇f2(xk−1)

)
. (2.12)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever such mini-

mizers exist, for 0 < γ ≤ 1/L.
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2.6 The CQ Algorithm and Split Feasibility

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex sets. The

split feasibility problem (SFP) is to find x in C such that Ax is in Q. The function

f2(x) =
1

2
‖PQAx− Ax‖2 (2.13)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spectral radius

of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (2.14)

We want to minimize the function f2(x) over x in C or, equivalently, to minimize the

function f(x) = ιC(x) + f2(x) over all x. The projected gradient descent algorithm

in this case has the iterative step

xk = PC
(
xk−1 − γAT (I − PQ)Axk−1

)
; (2.15)

this iterative method was called the CQ-algorithm in [7, 8]. The sequence {xk}
converges to a solution whenever f2 has a minimum on the set C, for 0 < γ ≤ 1/L.

If Q = {b}, then the CQ algorithm becomes the projected Landweber algorithm

[3]. If, in addition, C = RJ , then we get the Landweber algorithm [25]. In [15, 16]

Yair Censor and his colleagues modified the CQ algorithm and applied it to derive

protocols for intensity-modulated radiation therapy.

In the next few sections we consider several other optimization problems and

iterative methods that are particular cases of the SUMMA class.

3 Barrier-Function and Penalty-Function Methods

Barrier-function methods and penalty-function methods for constrained optimization

are not typically presented as AF methods [23]. However, barrier-function methods

can be reformulated as AF algorithms and shown to be members of the SUMMA

class. Penalty-function methods can be rewritten in the form of barrier-function

methods, permitting several facts about penalty-function algorithms to be obtained

from related results on barrier-function methods.

3.1 Barrier-Function Methods

The problem is to minimize f : X → R, subject to x ∈ C. We select b : X →
(−∞,+∞] with C = {x|b(x) < +∞}. For each k we minimize Bk(x) = f(x) + 1

k
b(x)
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over all x ∈ X to get xk, which must necessarily lie in C. Formulated this way, the

method is not yet in AF form. Nevertheless, we have the following proposition.

Proposition 3.1 The sequence {b(xk)} is nondecreasing, and the sequence {f(xk)}
is nonincreasing and converges to β = infx∈C f(x).

Proof: From Bk(x
k−1) ≥ Bk(x

k) and Bk−1(x
k) ≥ Bk−1(x

k−1), for k = 2, 3, ..., it

follows easily that

1

k − 1
(b(xk)− b(xk−1)) ≥ f(xk−1)− f(xk) ≥ 1

k
(b(xk)− b(xk−1)).

Suppose that {f(xk)} ↓ β∗ > β. Then there is z ∈ C with

f(xk) ≥ β∗ > f(z) ≥ β,

for all k. Then

1

k
(b(z)− b(xk)) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0,

for all k. But the sequence { 1
k
(b(z)− b(xk))} converges to zero, which contradicts the

assumption that β∗ > β.

The proof of Proposition 3.1 depended heavily on the details of the barrier-function

method. Now we reformulate the barrier-function method as an AF method.

Minimizing Bk(x) = f(x)+ 1
k
b(x) to get xk is equivalent to minimizing kf(x)+b(x),

which, in turn, is equivalent to minimizing

Gk(x) = f(x) + gk(x),

where

gk(x) = [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)].

Clearly, gk(x) ≥ 0 and gk(x
k−1) = 0. Now we have the AF form of the method. A

simple calculation shows that

Gk(x)−Gk(x
k) = gk+1(x), (3.1)

for all x ∈ X. Therefore, barrier-function methods are particular cases of the SUMMA

class.
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3.2 Penalty-Function Methods

Once again, we want to minimize f : X → R, subject to x ∈ C. We select a penalty

function p : X → [0,+∞) with p(x) = 0 if and only if x ∈ C. Then, for each k, we

minimize

Pk(x) = f(x) + kp(x),

over all x, to get xk. Here is a simple example of the use of penalty-function methods.

Let us minimize the function f(x) = (x + 1)2, subject to x ≥ 0. We let p(x) = 0

for x ≥ 0, and p(x) = x2, for x < 0. Then xk = − 1
k+1

, which converges to zero,

the correct answer, as k → +∞. Note that xk is not in C = R+, which is why such

methods are called exterior-point methods.

We suppose that f(x) ≥ α > −∞, for all x. Replacing f(x) with f(x) − α

if necessary, we may assume that f(x) ≥ 0, for all x. Clearly, it is equivalent to

minimize

p(x) +
1

k
f(x),

which gives the penalty-function method the form of a barrier-function method. From

Proposition 3.1 it follows that the sequence {p(xk)} is nonincreasing and converges

to zero, while the sequence {f(xk)} is nondecreasing, and, as we can easily show,

converges to some γ ≤ β.

Without imposing further structure on X and f we cannot conclude that {f(xk)}
converges to β. The reason is that, in the absence of further structure, such as the

continuity of f , what f does within C can be unrelated to what it does outside C. If,

for some f , we do have {f(xk)} converging to β, we can replace f(x) with f(x) − 1

for x not in C, while leaving f(x) unchanged for x in C. Then β remains unaltered,

while the new sequence {f(xk)} converges to γ = β − 1.

4 Alternating Minimization

In later sections we discuss the simultaneous multiplicative algebraic reconstruction

technique (SMART) and the expectation maximization maximum likelihood (EMML)

algorithm. In [6] the SMART and the related EMML algorithm [33] were derived in

tandem using the alternating minimization (AM) approach of Csiszár and Tusnády

[20], which is the subject of this section.

Let Θ : A × B → (−∞,+∞], where A and B are arbitrary nonempty sets. In

the AM approach we minimize Θ(a, bk−1) over a ∈ A to get ak and then minimize
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Θ(ak, b) over b ∈ B to get bk. We want

{Θ(ak, bk)} ↓ β = inf{Θ(a, b)|a ∈ A, b ∈ B}. (4.1)

In [20] Csiszár and Tusnády show that, if the function Θ possesses what they call the

five-point property,

Θ(a, b) + Θ(a, bk−1) ≥ Θ(a, bk) + Θ(ak, bk−1), (4.2)

for all a, b, and k, then (4.1) holds. There seemed to be no convincing explanation

of why the five-point property should be used, except that it works. I was quite

surprised when I discovered that the AM method can be reformulated as an AF

method to minimize a function of the single variable a, and the five-point property

for AM is precisely the SUMMA Inequality [10]. For each a select b(a) for which

Θ(a, b(a)) ≤ Θ(a, b) for all b ∈ B. Then let f(a) = Θ(a, b(a)).

5 Applying Alternating Minimization

In [22] Eggermont and LaRiccia proved that alternating minimization using a Breg-

man distance Df (a, b) that is jointly convex, that is, convex with respect to the vector

variable formed by concatenating a and b, has the five-point property.

In [2] Bauschke, Combettes and Noll consider the following problem: minimize

the function

Θ(a, b) = Λ(a, b) = φ(a) + ψ(b) +Df (a, b), (5.1)

where φ and ψ are convex on RJ , Df is a Bregman distance, and A = B is the interior

of the domain of f . They assume that

β = inf
(a,b)

Λ(a, b) > −∞, (5.2)

and seek a sequence {(ak, bk)} such that {Λ(ak, bk)} converges to β. The sequence

is obtained by the AM method, as in our previous discussion. They prove that, if

the Bregman distance is jointly convex, then {Λ(ak, bk)} ↓ β. In [12] this result was

obtained by showing that Λ(a, b) has the five-point property whenever Df is jointly

convex. The proof in [12] is related to that in [22]. From our previous discussion

of AM, we conclude therefore that the sequence {Λ(ak, bk)} converges to β; this is

Corollary 4.3 of [2].
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This suggests another class of proximal minimization methods for which β∗ = β.

Suppose that Df (x, y) is a jointly convex Bregman distance. For each k = 1, 2, ...,,

we minimize

Gk(x) = f(x) +Df (x
k−1, x) (5.3)

to get xk. Then using the result from [2], we may conclude that β∗ = β.

6 Cross-Entropy Methods

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler (KL) distance [24]

from a to b be

KL(a, b) = a log
a

b
+ b− a, (6.1)

with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors coordinate-

wise, so that

KL(x, z) =
J∑
j=1

KL(xj, zj). (6.2)

Then KL(x, z) ≥ 0 and KL(x, z) = 0 if and only if x = z. The following lemma will

be helpful later.

Lemma 6.1 Let z+ =
∑J

j=1 zj > 0. Then

KL(x, z) = KL(x+, z+) +KL(x,
x+
z+
z), (6.3)

so that

KL(x, z) ≥ KL(x+, z+). (6.4)

Unlike the Euclidean distance, the KL distance is not symmetric; KL(x, y) and

KL(y, x) are distinct. We can obtain different approximate solutions of a nonneg-

ative system of linear equations Px = y by minimizing KL(Px, y) and KL(y, Px)

with respect to nonnegative x. The SMART minimizes KL(Px, y), while the EMML

algorithm minimizes KL(y, Px). Both are iterative algorithms in the SUMMA class,

and are best developed using the alternating minimization (AM) framework.

7 The SMART

The SMART and the EMML algorithm are similar in several respects, but differ in

important ways that we shall consider in this and the next sections.
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7.1 The SMART Iteration

The SMART [21, 32, 17, 4, 5, 6] minimizes the function f(x) = KL(Px, y), over

nonnegative vectors x. Here y is a vector with positive entries, and P is a matrix

with nonnegative entries. For notational convenience, we shall assume that P and x

have been rescaled so that sj =
∑I

i=1 Pij = 1. Denote by X the set of all nonnegative

x for which the vector Px has only positive entries.

We begin with x0 > 0. Having found the vector xk−1, the next vector in the

SMART sequence is xk = Sxk−1, where, for x ∈ X , Sx is the vector with entries

given by

(Sx)j = xj exp

(
I∑
i=1

Pij log
yi

(Px)i

)
. (7.1)

Therefore, the SMART iterative step is

xkj = xk−1j exp

(
I∑
i=1

Pij log
yi

(Pxk−1)i

)
. (7.2)

In [4] the SMART was derived using the alternating minimization (AM) approach.

7.2 SMART as AM

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (7.3)

and

q(x)ij = xjPij. (7.4)

In the iterative step of the SMART we get xk by minimizing the function

KL(q(x), r(xk−1)) =
I∑
i=1

J∑
j=1

KL(q(x)ij, r(x
k−1)ij)

over x ≥ 0. Note that KL(Px, y) = KL(q(x), r(x)). The following Pythagorean

identities help to reveal the properties of the SMART:

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz); (7.5)
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and

KL(q(x), r(z)) = KL(q(Sz), r(z)) +KL(x, Sz). (7.6)

Note that it follows from Equation (6.4) that KL(x, z) − KL(Px, Pz) ≥ 0. Using

the Pythagorean identities, we see that SMART fits into the AM framework; to get

xk = Sxk−1 we minimize Θ(a, bk−1) = KL(q(x), r(xk−1)) to get xk. Then we minmize

Θ(ak, b) = KL(q(xk), r(x)) to get x = xk once again. Since KL is jointly convex, the

five-point property holds and SMART is in the SUMMA class.

7.3 SMART as PMAB

In [4, 5, 6] it was shown that xk can be obtained by minimizing

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1). (7.7)

We have

KL(x, z)−KL(Px, Pz) = Dh(x, z), (7.8)

for

h(x) =
J∑
j=1

(xj log xj − xj)−KL(Px, y),

which is convex and Gâteaux differentiable. Therefore, the SMART algorithm is a

particular case of PMAB. The SMART sequence {xk} converges to the nonnegative

minimizer of f(x) = KL(Px, y) for which KL(x, x0) is minimized. If the entries of

the starting vector x0 are all one, then the sequence {xk} converges to the minimizer

of KL(Px, y) with maximum Shannon entropy [4].

7.4 SMART as SUMMA

We can show directly that the SMART is a particular case of the SUMMA, by showing

that the SUMMA Inequality (1.2) holds. The inequality (6.4) is helpful in that regard.

From Equation (7.5) we know that the iterative step of SMART can be expressed as

follows: minimize the function

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (7.9)

to get xk. Using the inequality in (6.4), we see that the function

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1)
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is nonnegative. The gk(x) are defined for all nonnegative x; that is, the set C is the

closed nonnegative orthant in RJ . Each xk is a positive vector. From Equation (7.6)

we have

Gk(x) = Gk(x
k) +KL(x, xk), (7.10)

from which it follows immediately that the SMART is in the SUMMA class.

7.5 Summarizing SMART

The following theorem summarizes the situation with regard to the SMART [4, 5, 6].

Theorem 7.1 In the consistent case, in which y = Px has a nonnegative solution,

the SMART converges to the unique nonnegative solution of y = Px for which the

distance
∑J

j=1KL(xj, x
0
j) is minimized. In the inconsistent case it converges to the

unique nonnegative minimizer of the distance KL(Px, y) for which
∑J

j=1KL(xj, x
0
j)

is minimized. If P and every matrix derived from P by deleting columns has full rank

then there is a unique nonnegative minimizer of KL(Px, y), say x̂, and at most I− 1

entries of x̂ are nonzero.

8 The EMML

The EMML algorithm [33, 4, 5, 6] is similar to the SMART in several respects, but

different in important ways that we now discuss. The EMML minimizes the function

f(x) = KL(y, Px), over nonnegative vectors x.

For each nonnegative vector x in X , we define the operator Tx by

(Tx)j = xj

I∑
i=1

(
Pi,j

yi
(Px)i

)
. (8.11)

Starting with x0 > 0 and having found xk−1, the next iterate is xk = Txk−1. There-

fore, the next vector in the EMML sequence is xk with entries given by

xkj = xk−1j

(
I∑
i=1

Pij
yi

(Pxk−1)i

)
. (8.12)

The EMML algorithm is typically derived using alternating minimization.
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8.1 EMML as AM

We use the same notation as in the previous section. Having found xk−1, we find xk

by minimizing the function

KL(r(xk−1), q(x)).

As in the case of the SMART, we have Pythagorean identities that help us discover

the basic properties of the EMML algorithm:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (8.13)

and

KL(r(x), q(z)) = KL(r(x), q(Tx)) +KL(Tx, z). (8.14)

Note that KL(y, Px) = KL(r(x), q(x)). It follows from the inequality (6.4) that

KL(r(x), r(z)) ≥ KL(Tx, Tz). (8.15)

8.2 EMML as SUMMA

The EMML algorithm can be shown to be in the SUMMA class, but to do so requires

a reformulation of EMML that is not entirely satisfactory.

We know from [22] that alternating minimization using the KL distance has the

five-point property, and the EMML can be derived as AM using the KL distance.

However, the order of the variables is not what we would like. In AM we minimize

Θ(a, bk−1) over a ∈ A to get ak and then minimize Θ(ak, b) over b ∈ B to get bk. In

order to fit the EMML algorithm into this framework we must identify r(xk−1) with

ak, and q(xk) with bk. We showed that the problem in AM can be reformulated as

minimizing f(a) = Θ(a, b(a)). Now, this means that the function to be minimized

by the EMML would be KL(r(x), q(Tx)), not KL(r(x), q(x)) = KL(y, Px). This is

unsatisfactory, in that the operator T associated with the particular algorithm being

used, the EMML in this case, appears in the definition of the objective function to

be minimized.

There is a second way, of course. We can let r(xk−1) be bk−1 and q(x) be a.

However, now we can no longer rely on the result in [22], since the variables have

been switched; the five-point property is not symmetric in the two vector variables.

We could try to show directly that the EMML is in SUMMA, by showing that the

SUMMA Inequality (1.2) holds. Using the Pythagorean identities, (8.13) and (8.14),
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we see that we obtain xk by minimizing

Gk(x) = KL(y, Px) +KL(r(xk−1), q(x))−KL(r(xk−1), q(xk)), (8.16)

or

Gk(x) = KL(y, Px) +KL(r(xk−1), r(x)) = f(x) + gk(x). (8.17)

From

Gk(x)−Gk(x
k) = KL(xk, x), (8.18)

the SUMMA Inequality (1.2) becomes

KL(xk, x) ≥ KL(r(xk), r(x)) = gk+1(x). (8.19)

I have not been able to prove that this inequality holds, and I doubt that it is true.

We also know that the EMML fits into the PMA framework:

Gk(x) = f(x) +KL(r(xk−1), r(x)) = f(x) + d(x, xk−1). (8.20)

However, the distance

d(x, z) = KL(r(z), r(x)) (8.21)

is not a Bregman distance in x and z. Therefore, we do not have a PMAB algorithm.

It is possible, of course, that this distance fits into the induced-proximal-distance

approach of [1], which we shall discuss later, but that seems unlikely. We can, however,

show that the EMML algorithm is in the SUMMA2 class.

8.3 The EMML as SUMMA2

When we try to exhibit the EMML algorithm as a member of the SUMMA class we

encounter some difficulties. With f(x) = KL(y, Px) and gk(x) = KL(r(xk−1), r(x)),

it seems that the SUMMA Inequality (1.2) does not hold. We know, though, that

Eggermont and LaRiccia tell us that AM with the KL distance has the five-point

property, and therefore is in the SUMMA class. Since the EMML algorithm can

be derived using AM with the KL distance, the EMML algorithm must be in the

SUMMA class. However, exhibiting the EMML algorithm as a SUMMA algorithm

in this way is artificial and unsatisfactory. In this section we show that the EMML

algorithm is more naturally expressed as a member of the SUMMA2 class.
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Using the Pythagorean identities (8.13) and (8.14), we write KL(r(z), q(xk)) in

two ways:

KL(r(z), q(xk)) = KL(r(xk), q(xk)) +KL(r(z), r(xk)), (8.22)

and

KL(r(z), q(xk)) = KL(y, Pz)−KL(Tz, z) +KL(Tz, xk). (8.23)

From the inequality (8.15) we have

KL(r(z), r(xk)) ≥ KL(Tz, Txk) = KL(Tz, xk+1). (8.24)

Therefore,

KL(Tz, xk)−KL(Tz, xk+1) ≥ f(xk)− f(z) = KL(y, Pxk)−KL(y, Pz). (8.25)

With hk(z) = KL(Tz, xk) we have

hk(z)− hk+1(z) ≥ f(xk)− f(z), (8.26)

for all positive z. We conclude that the EMML algorithm is in the SUMMA2 class.

Note that the functions hk(z) are not the gk(z).

8.4 Summarizing the EMML Algorithm

The following theorem summarizes the situation with regard to the EMML algorithm

[4, 5, 6].

Theorem 8.1 In the consistent case, in which y = Px has a nonnegative solution,

the EMML algorithm converges to a nonnegative solution x̂ of y = Px. In the incon-

sistent case it converges to a nonnegative minimizer x̂ of the distance KL(y, Px). If

P and every matrix derived from P by deleting columns has full rank then there is a

unique nonnegative minimizer of KL(y, Px), x̂, and at most I − 1 entries of x̂ are

nonzero.

In contrast to the SMART, we have no further information about the EMML limit

in either the consistent or inconsistent cases. When the limit x̂ is not unique, it will

certainly depend on the choice of x0, but how it depends on x0 is unknown.
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9 The PMA of Auslender and Teboulle

In [1] Auslender and Teboulle take C to be a closed, nonempty, convex subset of RJ ,

with interior U . At the kth step of their method one minimizes a function

Gk(x) = f(x) + d(x, xk−1) (9.1)

to get xk. Their distance d(x, y) is defined for x and y in U , and the gradient with

respect to the first variable, denoted ∇1d(x, y), is assumed to exist. The distance

d(x, y) is not assumed to be a Bregman distance. Instead, they assume that the

distance d has an associated induced proximal distance H(a, b) ≥ 0, finite for a and b

in U , with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b), (9.2)

for all c in U .

If d = Dh, that is, if d is a Bregman distance, then from the equation

〈∇1d(b, a), c− b〉 = Dh(c, a)−Dh(c, b)−Dh(b, a) (9.3)

we see that Dh has H = Dh for its associated induced proximal distance, so Dh is

self-proximal, in the terminology of [1]. The method of Auslender and Teboulle seems

not to be a particular case of SUMMA. However, it is in the SUMMA2 class, as we

now show.

Since xk minimizes f(x) + d(x, xk−1), it follows that

0 ∈ ∂f(xk) +∇1d(xk, xk−1),

so that

−∇1d(xk, xk−1) ∈ ∂f(xk).

We then have

f(xk)− f(x) ≤ 〈∇1d(xk, xk−1), x− xk〉.

Using the associated induced proximal distance H, we obtain

f(xk)− f(x) ≤ H(x, xk−1)−H(x, xk).

Therefore, this method is in the SUMMA2 class, with the choice of hk(x) = H(x, xk−1).

Consequently, we have β∗ = β for these algorithms.

It is interesting to note that the Auslender-Teboulle approach places a restriction

on the function d(x, y), the existence of the induced proximal distance H, that is
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unrelated to the objective function f(x), but this condition is helpful only for convex

f(x). In contrast, the SUMMA approach requires that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(x
k),

which involves the f(x) being minimized, but does not require that f(x) be convex; it

does not even require any structure on X. The SUMMA2 approach is general enough

to include both classes.

10 Summary

We have considered the problem of minimizing f : X → R over x in C, a nonempty

subset of the arbitrary set X. For k = 1, 2, ... we minimize Gk(x) = f(x) + gk(x) to

get xk. For a sequence {xk} generated by an AF algorithm the sequence {f(xk)} is

nonincreasing and converges to some β∗ ≥ −∞. In addition, for AF algorithms in

the SUMMA class we have {f(xk)} ↓ β = infx∈C f(x); so β∗ = β.

The SUMMA class of algorithms is quite large, but there are algorithms not in

the SUMMA class for which β∗ = β; the proximal minimization method of Auslender

and Teboulle [1] is an example. The SUMMA Inequality is sufficient to guarantee

that β∗ = β, but it is clearly overly restrictive. We extend the SUMMA class to the

SUMMA2 class by generalizing the SUMMA Inequality and show that the methods

of [1] are members of the larger SUMMA2 class.

Although the EMML algorithm is in the SUMMA class, to exhibit it as such

requires us to reformulate the problem being solved in an artificial manner. The

EMML can be shown, in a quite natural way, to be a member of the SUMMA2 class.

The hk(z) are not the gk(z), nor do they have the form hk(z) = H(z, xk−1) for some

induced proximal distance H, since the hk(z) involve the operator T .
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