
Lecture Notes on Auxiliary-Function and

Projection-Based Optimization Methods in

Inverse Problems1

Charles L. Byrne2

June 16, 2013

1The latest version is available at http://faculty.uml.edu/cbyrne/cbyrne.html
2Charles Byrne@uml.edu, Department of Mathematical Sciences, University

of Massachusetts Lowell, Lowell, MA 01854



Contents

1 Introduction 5
1.1 Fourier Transform Data . . . . . . . . . . . . . . . . . . . . 5
1.2 Sequential Optimization . . . . . . . . . . . . . . . . . . . . 5
1.3 Examples of SUM . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Barrier-Function Methods . . . . . . . . . . . . . . . 6
1.3.2 Penalty-Function Methods . . . . . . . . . . . . . . . 7

1.4 Auxiliary-Function Methods . . . . . . . . . . . . . . . . . . 7
1.4.1 General AF Methods . . . . . . . . . . . . . . . . . . 7
1.4.2 AF Requirements . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Majorization Minimization . . . . . . . . . . . . . . 9
1.4.4 The Method of Auslander and Teboulle . . . . . . . 9
1.4.5 The EM Algorithm . . . . . . . . . . . . . . . . . . . 10

1.5 The SUMMA Class of AF Methods . . . . . . . . . . . . . . 11
1.5.1 The SUMMA Condition . . . . . . . . . . . . . . . . 11
1.5.2 Auslander and Teboulle Revisited . . . . . . . . . . 12
1.5.3 Proximal Minimization . . . . . . . . . . . . . . . . . 13
1.5.4 The IPA . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.5 Projected Gradient Descent . . . . . . . . . . . . . . 14
1.5.6 Relaxed Gradient Descent . . . . . . . . . . . . . . . 15
1.5.7 Regularized Gradient Descent . . . . . . . . . . . . . 16

1.6 A Convergence Theorem . . . . . . . . . . . . . . . . . . . . 16

2 Fourier Transform Data 19
2.1 Fourier Series Expansions . . . . . . . . . . . . . . . . . . . 19
2.2 The Discrete Fourier Transform . . . . . . . . . . . . . . . . 19
2.3 The Unknown Amplitude Problem . . . . . . . . . . . . . . 20
2.4 Limited Data . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Can We Get More Data? . . . . . . . . . . . . . . . . . . . 22
2.6 Over-Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Band-Limited Extrapolation . . . . . . . . . . . . . . . . . . 24
2.8 A Projection-Based View . . . . . . . . . . . . . . . . . . . 24
2.9 Other Forms of Prior Knowledge . . . . . . . . . . . . . . . 24

i



ii CONTENTS

2.10 A Broader View . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Continuous or Discrete? . . . . . . . . . . . . . . . . . . . . 28
2.13 A Projection-Based Characterization of Bregman Distances 29

3 Barrier-function Methods 35
3.1 Barrier Functions . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Examples of Barrier Functions . . . . . . . . . . . . . . . . 35

3.2.1 The Logarithmic Barrier Function . . . . . . . . . . 36
3.2.2 The Inverse Barrier Function . . . . . . . . . . . . . 36

4 Penalty-function Methods 39
4.1 Interior- and Exterior-Point Methods . . . . . . . . . . . . . 39
4.2 Examples of Penalty Functions . . . . . . . . . . . . . . . . 39

4.2.1 The Absolute-Value Penalty Function . . . . . . . . 40
4.2.2 The Courant-Beltrami Penalty Function . . . . . . . 40
4.2.3 The Quadratic-Loss Penalty Function . . . . . . . . 40
4.2.4 Regularized Least-Squares . . . . . . . . . . . . . . . 40
4.2.5 Minimizing Cross-Entropy . . . . . . . . . . . . . . . 41
4.2.6 The Lagrangian in Convex Programming . . . . . . 41
4.2.7 Infimal Convolution . . . . . . . . . . . . . . . . . . 42
4.2.8 Moreau’s Proximity-Function Method . . . . . . . . 42

4.3 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Proximal Minimization 47
5.1 The Basic Problem . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Proximal Minimization . . . . . . . . . . . . . . . . . . . . . 48
5.3 The PMA is in SUMMA . . . . . . . . . . . . . . . . . . . . 48
5.4 Convergence of the PMA . . . . . . . . . . . . . . . . . . . 49
5.5 The Newton-Raphson Algorithm . . . . . . . . . . . . . . . 50
5.6 Another Job for the PMA . . . . . . . . . . . . . . . . . . . 50
5.7 The Goldstein-Osher Algorithm . . . . . . . . . . . . . . . . 51
5.8 A Question about the PMA . . . . . . . . . . . . . . . . . . 52

6 An Interior-Point Algorithm- The IPA 55
6.1 The IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 The Landweber and Projected Landweber Algorithms . . . 55
6.3 The Simultaneous MART . . . . . . . . . . . . . . . . . . . 56

7 The Forward-Backward Splitting Algorithm 59
7.1 The FBS Algorithm . . . . . . . . . . . . . . . . . . . . . . 59
7.2 FBS as SUMMA . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Moreau’s Proximity Operators . . . . . . . . . . . . . . . . 60
7.4 Convergence of the FBS Algorithm . . . . . . . . . . . . . . 60



CONTENTS iii

7.5 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.5.1 Projected Gradient Descent . . . . . . . . . . . . . . 63
7.5.2 The CQ Algorithm . . . . . . . . . . . . . . . . . . . 63
7.5.3 The Projected Landweber Algorithm . . . . . . . . . 63
7.5.4 Minimizing f2 over a Linear Manifold . . . . . . . . 64

7.6 Feasible-Point Algorithms . . . . . . . . . . . . . . . . . . . 65
7.6.1 The Projected Gradient Algorithm . . . . . . . . . . 65
7.6.2 The Reduced Gradient Algorithm . . . . . . . . . . 65
7.6.3 The Reduced Newton-Raphson Method . . . . . . . 66

8 The SMART and EMML Algorithms 67
8.1 The SMART Iteration . . . . . . . . . . . . . . . . . . . . . 67
8.2 The EMML Iteration . . . . . . . . . . . . . . . . . . . . . . 67
8.3 The EMML and the SMART as AM Methods . . . . . . . . 68
8.4 The SMART as a Case of SUMMA . . . . . . . . . . . . . . 68
8.5 The SMART as a Case of the PMA . . . . . . . . . . . . . 69
8.6 SMART and EMML as Projection Methods . . . . . . . . . 70
8.7 The MART and EMART Algorithms . . . . . . . . . . . . . 71
8.8 Possible Extensions of MART and EMART . . . . . . . . . 72

9 Regularization Methods 73
9.1 The Issue of Sensitivity to Noise . . . . . . . . . . . . . . . 73
9.2 Non-Negatively Constrained Least-Squares . . . . . . . . . 73
9.3 The EMML Algorithm . . . . . . . . . . . . . . . . . . . . . 74
9.4 Norm-Constrained Least-Squares . . . . . . . . . . . . . . . 75
9.5 Regularizing Landweber’s Algorithm . . . . . . . . . . . . . 75
9.6 Regularizing the ART . . . . . . . . . . . . . . . . . . . . . 76
9.7 Regularizing SMART and EMML . . . . . . . . . . . . . . . 77

10 Alternating Minimization 79
10.1 Alternating Minimization . . . . . . . . . . . . . . . . . . . 79

10.1.1 The AM Framework . . . . . . . . . . . . . . . . . . 79
10.1.2 The AM Iteration . . . . . . . . . . . . . . . . . . . 80
10.1.3 The Five-Point Property for AM . . . . . . . . . . . 80
10.1.4 The Main Theorem for AM . . . . . . . . . . . . . . 81
10.1.5 The Three- and Four-Point Properties . . . . . . . . 81

10.2 Alternating Bregman Distance Minimization . . . . . . . . 82
10.2.1 Bregman Distances . . . . . . . . . . . . . . . . . . . 82
10.2.2 The Eggermont-LaRiccia Lemma . . . . . . . . . . . 83

10.3 Minimizing a Proximity Function . . . . . . . . . . . . . . . 84
10.4 Right and Left Projections . . . . . . . . . . . . . . . . . . . 84
10.5 More Proximity Function Minimization . . . . . . . . . . . 85

10.5.1 Cimmino’s Algorithm . . . . . . . . . . . . . . . . . 85
10.5.2 Simultaneous Projection for Convex Feasibility . . . 86



iv CONTENTS

10.5.3 The Bauschke-Combettes-Noll Problem . . . . . . . 86
10.6 AM as SUMMA . . . . . . . . . . . . . . . . . . . . . . . . 88

11 Appendix One: Theorem 1.3 Revisited 89
11.1 Improving Theorem 1.3 . . . . . . . . . . . . . . . . . . . . 89
11.2 Properties of the Gradient . . . . . . . . . . . . . . . . . . . 89
11.3 Non-expansive gradients . . . . . . . . . . . . . . . . . . . . 90
11.4 Proof of Theorem 11.1 . . . . . . . . . . . . . . . . . . . . . 91

12 Appendix Two: Bregman-Legendre Functions 93
12.1 Essential Smoothness and Essential Strict Convexity . . . . 93
12.2 Bregman Projections onto Closed Convex Sets . . . . . . . 94
12.3 Bregman-Legendre Functions . . . . . . . . . . . . . . . . . 95
12.4 Useful Results about Bregman-Legendre Functions . . . . . 95

13 Appendix Three: Urn Models in Remote Sensing 97
13.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 97
13.2 The Urn Model . . . . . . . . . . . . . . . . . . . . . . . . . 97
13.3 Some Mathematical Notation . . . . . . . . . . . . . . . . . 98
13.4 An Application to SPECT Imaging . . . . . . . . . . . . . . 99



Preface

A fundamental inverse problem is the reconstruction of a function from
finitely many measurements pertaining to that function. This problem is
central to radar, sonar, optical imaging, transmission and emission tomog-
raphy, magnetic resonance imaging, and many other applications. Because
the measured data is limited, it cannot serve to determine one single correct
answer. In each of these applications some sort of prior information is incor-
porated in the reconstruction process in order to produce a usable solution.
Minimizing a cost function is a standard technique used to single out one
solution from the many possibilities. The reconstruction algorithms often
employ projection techniques to guarantee that the reconstructed function
is consistent with the known constraints. Typical image reconstruction
problems involve thousands of data values and iterative algorithms are re-
quired to perform the desired optimization.

We begin these notes with a typical remote-sensing problem in which the
available data are values of the Fourier transform of the function we wish
to reconstruct. The function we wish to reconstruct is the amplitude func-
tion associated with a spatially extended object transmitting or reflecting
electromagnetic radiation. Problems of this sort arise in a variety of appli-
cations, from mapping the sourses of sunspot activity to synthetic-aperture
radar and magnetic-resonance imaging. Our example is a somewhat sim-
plified version of what is encountered in the real world, but it serves to
illustrate several key aspects of most remote-sensing problems. From this
example we see why it is that the data is limited, apart, of course, from
the obvious need to limit ourselves to finitely many data values, and come
to understand how resolution depends on the relationship between the size
of the object being imaged and the frequency of the probing or tranmitted
signal.

Because our data is limited and the reconstruction problems are under-
determined, we are led to consider minimum-norm reconstructions. Once
we have settled on an appropriate ambient space, usually a Hilbert space,
in which to place the function to be reconstructed, it is reasonable to take
as the reconstruction the data-consistent member of the space having the
smallest norm. If we have additional constraints that we wish to impose, we
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can use orthogonal projection onto convex sets to satisfy the constraints. A
key step, and one that is too often overlooked, is the choice of the ambient
space. As we shall see, soft constraints coming from prior information, such
as knowledge of the overall shape of the function being reconstructed, or of
some prominent features of that function, can often be incorporated in the
reconstruction process through the choice of the ambient space. Although
Hilbert space norms are the most convenient, other Banach space norms,
or distance measures not derived from norms, such as cross-entropy, can
also be helpful.

It is usually the case that the function we wish to reconstruct is a real-
or complex-valued function of one or more continuous variables. At some
stage of the reconstruction, we must discretize the function or its estimate,
if only to plot the estimate at the final step. It can be helpful to introduce
the discretization earlier in the process, and most of our discussion here
will focus on reconstructing a finite vector in RJ . Once we have decided
to base the reconstruction on the minimization of some cost function, we
need to find an appropriate algorithm; our focus here will be on iterative
minimization algorithms.

In simple terms, the basic problem is to minimize a function f : X →
(−∞,∞], over a non-empty subset C of X, where X is an arbitrary set. At
the kth step of a sequential optimization algorithm we optimize a function
Gk(x) = f(x) + gk(x) to get xk. In what we call here an auxiliary-function
(AF) algorithm we minimize Gk(x) over x ∈ C, and require that the aux-
iliary function gk(x) be chosen so that gk(xk−1) = 0 and gk(x) ≥ 0 for
all x ∈ C. Auxiliary-function (AF) methods are closely related to sequen-
tial unconstrained minimization (SUM) procedures such as the barrier-
and penalty-function algorithms. As normally formulated, barrier-function
methods and penalty-function methods are not AF methods, but can be
reformulated as AF methods. Many projection-based methods are also AF
methods.

Our main objective is to select the gk(x) so that the infinite sequence
{xk} generated by our algorithm converges to a solution of the problem;
this, of course, requires some topology on the set X. Failing that, we want
the sequence {f(xk)} to converge to d = inf{f(x)|x ∈ C} or, at the very
least, for the sequence {f(xk)} to be non-increasing.

An auxiliary-function algorithm is in the SUMMA class if, for all x ∈ C,
Gk(x) − Gk(xk) ≥ gk+1(x) ≥ 0. If {xk} is generated by an algorithm in
the SUMMA class, then the sequence {f(xk)} converges to d.

A wide variety of iterative methods, including barrier-function and
penalty-function methods, can be formulated to be members of the SUMMA
class. Other members of the SUMMA class include projection-based meth-
ods, proximal minimization algorithms using Bregman distances, forward-
backward splitting methods, the CQ algorithm for the split feasibility prob-
lem, the simultaneous MART algorithm, alternating minimization meth-
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ods, and the expectation maximization maximum likelihood (EM) algo-
rithms.
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Chapter 1

Introduction

1.1 Fourier Transform Data

We begin with the fundamental remote-sensing problem of reconstructing
a function from finitely many values of its Fourier transform. We choose
to begin with this particular problem not only because it is commonly
encountered in a variety of applications, but also because it introduces
several important issues that we face in other reconstruction problems as
well. Because these problems are under-determined, it is reasonable to
minimize a cost function to help us select one solution from the many that
are possible. This leads us to consideration of algorithms for performing
these minimizations.

1.2 Sequential Optimization

Many applications of optimization involve solving large systems of linear
or non-linear equations, usually subject to constraints on the variables.
When the data is insufficient to specify a single unique solution, one can
optimize a real-valued function such as a norm or cross-entropy, subject
to consistency with the data and other constraints. Since data is typically
noisy, regularized solutions that are not exactly consistent with the mea-
sured data are preferred. Many of these methods employ projections onto
convex sets, either explicitly or implicitly.

Optimizing a real-valued function f(x) subject to constraints on the
independent vector variable x can be a difficult problem to solve; typically,
iterative algorithms are required. The idea in sequential optimization is to
replace the single difficult optimization problem with a sequence of sim-
pler optimization problems. At the kth step of a sequential optimization
algorithm we optimize f(x) + gk(x) to get xk. Sequential unconstrained
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6 CHAPTER 1. INTRODUCTION

minimization (SUM) techniques often used to solve such problems [47].
Suppose that the problem is to minimize a function f : X → R, over x ∈

C ⊆ X, where X is an arbitrary set. At the kth step of a SUM algorithm
we minimize the function f(x) + gk(x) to get xk. The functions gk(x) may
force xk to be within C, as with barrier-function methods, or may penalize
violations of the constraint, as with penalty-function methods. The gk(x)
may also be selected so that xk can be expressed in closed form.

Auxiliary-function (AF) methods, which is our topic here, closely re-
semble SUM methods. In AF methods we minimize Gk(x) = f(x) + gk(x)
over x ∈ C to get xk. Certain restrictions are placed on the auxiliary
functions gk(x) to control the behavior of the sequence {f(xk)}. In the
best of cases, the sequence of minimizers will converge to a solution of the
original constrained minimization problem, or, failing that, their function
values will converge to the constrained minimum, or, at least, will be non-
increasing. Even when there are no constraints, the problem of minimizing
a real-valued function may require iteration; the formalism of AF mini-
mization can be useful in deriving such iterative algorithms, as well as in
proving convergence.

1.3 Examples of SUM

Barrier-function algorithms and penalty-function algorithms are two of the
best known examples of SUM.

1.3.1 Barrier-Function Methods

Suppose that C ⊆ RJ and b : C → R is a barrier function for C, that is, b
has the property that b(x)→ +∞ as x approaches the boundary of C. At
the kth step of the iteration we minimize

Bk(x) = f(x) +
1

k
b(x) (1.1)

to get xk. Then each xk is in C. We want the sequence {xk} to converge
to some x∗ in the closure of C that solves the original problem. Barrier-
function methods are called interior-point methods because each xk satisfies
the constraints.

For example, suppose that we want to minimize the function f(x) =
f(x1, x2) = x21 + x22, subject to the constraint that x1 + x2 ≥ 1. The
constraint is then written g(x1, x2) = 1 − (x1 + x2) ≤ 0. We use the
logarithmic barrier function b(x) = − log(x1 + x2 − 1). For each positive
integer k, the vector xk = (xk1 , x

k
2) minimizing the function

Bk(x) = x21 + x22 −
1

k
log(x1 + x2 − 1) = f(x) +

1

k
b(x)
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has entries

xk1 = xk2 =
1

4
+

1

4

√
1 +

4

k
.

Notice that xk1 + xk2 > 1, so each xk satisfies the constraint. As k → +∞,
xk converges to ( 1

2 ,
1
2 ), which is the solution to the original problem. The

use of the logarithmic barrier function forces x1 + x2 − 1 to be positive,
thereby enforcing the constraint on x = (x1, x2).

1.3.2 Penalty-Function Methods

Again, our goal is to minimize a function f : RJ → R, subject to the
constraint that x ∈ C, where C is a non-empty closed subset of RJ . We
select a non-negative function p : RJ → R with the property that p(x) = 0
if and only if x is in C and then, for each positive integer k, we minimize

Pk(x) = f(x) + kp(x), (1.2)

to get xk. We then want the sequence {xk} to converge to some x∗ ∈ C
that solves the original problem. In order for this iterative algorithm to be
useful, each xk should be relatively easy to calculate.

If, for example, we should select p(x) = +∞ for x not in C and p(x) = 0
for x in C, then minimizing Pk(x) is equivalent to the original problem and
we have achieved nothing.

As an example, suppose that we want to minimize the function f(x) =
(x+ 1)2, subject to x ≥ 0. Let us select p(x) = x2, for x ≤ 0, and p(x) = 0
otherwise. Then xk = −1

k+1 , which converges to the right answer, x∗ = 0,
as k →∞.

1.4 Auxiliary-Function Methods

In this section we define auxiliary-function methods, establish their basic
properties, and give several examples to be considered in more detail later.

1.4.1 General AF Methods

Let C be a non-empty subset of an arbitrary set X, and f : X → R. We
want to minimize f(x) over x in C. At the kth step of an auxiliary-function
(AF) algorithm we minimize

Gk(x) = f(x) + gk(x) (1.3)

over x ∈ C to obtain xk. Our main objective is to select the gk(x) so
that the infinite sequence {xk} generated by our algorithm converges to
a solution of the problem; this, of course, requires some topology on the



8 CHAPTER 1. INTRODUCTION

set X. Failing that, we want the sequence {f(xk)} to converge to d =
inf{f(x)|x ∈ C} or, at the very least, for the sequence {f(xk)} to be non-
increasing.

1.4.2 AF Requirements

It is part of the definition of AF methods that the auxiliary functions gk(x)
be chosen so that gk(x) ≥ 0 for all x ∈ C and gk(xk−1) = 0. We have the
following proposition.

Proposition 1.1 Let the sequence {xk} be generated by an AF algorithm.
Then the sequence {f(xk)} is non-increasing, and, if d is finite, the se-
quence {gk(xk)} converges to zero.

Proof: We have

f(xk) + gk(xk) = Gk(xk) ≤ Gk(xk−1) = f(xk−1) + gk(xk−1) = f(xk−1).

Therefore,

f(xk−1)− f(xk) ≥ gk(xk) ≥ 0.

Since the sequence {f(xk)} is decreasing and bounded below by d, the dif-
ference sequence must converge to zero, if d is finite; therefore, the sequence
{gk(xk)} converges to zero in this case.

The auxiliary functions used in Equation (1.1) do not have these prop-
erties but the barrier-function algorithm can be reformulated as an AF
method. The iterate xk obtained by minimizing Bk(x) in Equation (1.1)
also minimizes the function

Gk(x) = f(x) + [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)]. (1.4)

The auxiliary functions

gk(x) = [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)] (1.5)

now have the desired properties. In addition, we have Gk(x) − Gk(xk) =
gk+1(x) for all x ∈ C, which will become significant shortly.

As originally formulated, the penalty-function methods do not fit into
the class of AF methods we consider here. However, a reformulation of the
penalty-function approach, with p(x) and f(x) switching roles, permits the
penalty-function methods to be studied as barrier-function methods, and
therefore as acceptable AF methods.
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1.4.3 Majorization Minimization

Majorization minimization (MM), also called optimization transfer, is a
technique used in statistics to convert a difficult optimization problem into
a sequence of simpler ones [67, 7, 58]. The MM method requires that we
majorize the objective function f(x) with g(x|y), such that g(x|y) ≥ f(x),
for all x, and g(y|y) = f(y). At the kth step of the iterative algorithm we
minimize the function g(x|xk−1) to get xk.

The MM algorithms are members of the AF class. At the kth step of
an MM iteration we minimize

Gk(x) = f(x) + [g(x|xk−1)− f(x)] = f(x) + d(x, xk−1), (1.6)

where d(x, z) is some distance function satisfying d(x, z) ≥ 0 and d(z, z) =
0. Since gk(x) = d(x, xk−1) ≥ 0 and gk(xk−1) = 0, MM methods are also
AF methods; it then follows that the sequence {f(xk)} is non-increasing.

All MM algorithms have the form xk = Txk−1, where T is the operator
defined by

Tz = argminx{f(x) + d(x, z)}. (1.7)

If d(x, z) = 1
2‖x − z‖22, then T is Moreau’s proximity operator Tz =

proxf (z) [62, 63, 64].

1.4.4 The Method of Auslander and Teboulle

The method of Auslander and Teboulle [1] is a particular example of an
MM algorithm. We take C to be a closed, non-empty, convex subset of RJ ,
with interior U . At the kth step of their method one minimizes a function

Gk(x) = f(x) + d(x, xk−1) (1.8)

to get xk. Their distance d(x, y) is defined for x and y in U , and the
gradient with respect to the first variable, denoted ∇1d(x, y), is assumed
to exist. The distance d(x, y) is not assumed to be a Bregman distance.
Instead, they assume that the distance d has an associated induced proximal
distance H(a, b) ≥ 0, finite for a and b in U , with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b), (1.9)

for all c in U .
If d = Dh, that is, if d is a Bregman distance, then from the equation

〈∇1d(b, a), c− b〉 = Dh(c, a)−Dh(c, b)−Dh(b, a) (1.10)

we see that Dh has H = Dh for its associated induced proximal distance,
so Dh is self-proximal, in the terminology of [1].
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1.4.5 The EM Algorithm

The expectation maximization maximum likelihood (EM) “algorithm” is
not a single algorithm, but a framework, or, as the authors of [7] put it, a
“prescription” , for constructing algorithms. Nevertheless, we shall refer to
it as the EM algorithm.

The EM algorithm is always presented within the context of statistical
likelihood maximization, but the essence of this method is not stochastic;
the EM methods can be shown to be a subclass of AF methods. We present
now the essential aspects of the EM algorithm without relying on statistical
concepts.

The problem is to maximize a non-negative function f : Z → R, where
Z is an arbitrary set; in the stochastic context f(z) is a likelihood function
of the parameter vector z. We assume that there is z∗ ∈ Z with f(z∗) ≥
f(z), for all z ∈ Z.

We also assume that there is a non-negative function b : RJ × Z → R
such that

f(z) =

∫
b(x, z)dx.

Having found zk−1, we maximize the function

H(zk−1, z) =

∫
b(x, zk−1) log b(x, z)dx (1.11)

to get zk. Adopting such an iterative approach presupposes that maximiz-
ing H(zk−1, z) is simpler than maximizing f(z) itself. This is the case with
the EM algorithms.

The cross-entropy or Kullback-Leibler distance [54] is a useful tool for
analyzing the EM algorithm. For positive numbers u and v, the Kullback-
Leibler distance from u to v is

KL(u, v) = u log
u

v
+ v − u. (1.12)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL
distance is extended to nonnegative vectors component-wise, so that for
nonnegative vectors a and b we have

KL(a, b) =

J∑
j=1

KL(aj , bj). (1.13)

One of the most useful and easily proved facts about the KL distance is
contained in the following lemma.

Lemma 1.1 For non-negative vectors a and b, with b+ =
∑J
j=1 bj > 0, we

have

KL(a, b) = KL(a+, b+) +KL(a,
a+
b+
b). (1.14)
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This lemma can be extended to obtain the following useful identity; we
simplify the notation by setting b(z) = b(x, z).

Lemma 1.2 For f(z) and b(x, z) as above, and z and w in Z, with f(w) >
0, we have

KL(b(z), b(w)) = KL(f(z), f(w)) +KL(b(z), (f(z)/f(w))b(w)). (1.15)

Maximizing H(zk−1, z) is equivalent to minimizing

Gk(z) = G(zk−1, z) = −f(z) +KL(b(zk−1), b(z)), (1.16)

where

gk(z) = KL(b(zk−1), b(z)) =

∫
KL(b(x, zk−1), b(x, z))dx. (1.17)

Since gk(z) ≥ 0 for all z and gk(zk−1) = 0, we have an AF method. Without
additional restrictions, we cannot conclude that {f(zk)} converges to f(z∗).

We get zk by minimizing Gk(z) = G(zk−1, z). When we minimize
G(z, zk), we get zk again. Therefore, we can put the EM algorithm into
the alternating minimization (AM) framework of Csiszár and Tusnády [42],
to be discussed later.

1.5 The SUMMA Class of AF Methods

As we have seen, whenever the sequence {xk} is generated by an AF al-
gorithm, the sequence {f(xk)} is non-increasing. We want more, however;
we want the sequence {f(xk)} to converge to d. This happens for those
AF algorithms in the SUMMA class.

1.5.1 The SUMMA Condition

An AF algorithm is said to be in the SUMMA class if the auxiliary functions
gk(x) are chosen so that the SUMMA condition holds; that is,

Gk(x)−Gk(xk) ≥ gk+1(x) ≥ 0, (1.18)

for all x ∈ C. As we just saw, the reformulated barrier-function method is
in the SUMMA class. We have the following theorem.

Theorem 1.1 If the sequence {xk} is generated by an algorithm in the
SUMMA class, then the sequence {f(xk)} converges to d = inf{f(x)|x ∈
C}.
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Proof: Suppose that there is d∗ > d with f(xk) ≥ d∗, for all k. Then there
is z in C with

f(xk) ≥ d∗ > f(z) ≥ d,

for all k. From the inequality (1.18) we have

gk+1(z) ≤ Gk(z)−Gk(xk),

and so, for all k,

gk(z)− gk+1(z) ≥ f(xk) + gk(xk)− f(z) ≥ f(xk)− f(z) ≥ d∗ − f(z) > 0.

This tells us that the nonnegative sequence {gk(z)} is decreasing, but that
successive differences remain bounded away from zero, which cannot hap-
pen.

1.5.2 Auslander and Teboulle Revisited

The method of Auslander and Teboulle described previously seems not
to be a particular case of SUMMA. However, we can adapt the proof of
Theorem 1.1 to prove the analogous result for their method. We assume
that f(x̂) ≤ f(x), for all x in C.

Theorem 1.2 For k = 2, 3, ..., let xk minimize the function

Gk(x) = f(x) + d(x, xk−1).

If the distance d has an induced proximal distance H, then {f(xk)} → f(x̂).

Proof: We know that the sequence {f(xk)} is decreasing and the sequence
{d(xk, xk−1)} converges to zero. Now suppose that

f(xk) ≥ f(x̂) + δ,

for some δ > 0 and all k. Since x̂ is in C, there is z in U with

f(xk) ≥ f(z) +
δ

2
,

for all k. Since xk minimizes Fk(x), it follows that

0 = ∇f(xk) +∇1d(xk, xk−1).

Using the convexity of the function f(x) and the fact that H is an induced
proximal distance, we have

0 <
δ

2
≤ f(xk)− f(z) ≤ 〈−∇f(xk), z − xk〉 =
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〈∇1d(xk, xk−1), z − xk〉 ≤ H(z, xk−1)−H(z, xk).

Therefore, the nonnegative sequence {H(z, xk)} is decreasing, but its suc-
cessive differences remain bounded below by δ

2 , which is a contradiction.

It is interesting to note that the Auslander-Teboulle approach places a
restriction on the function d(x, y), the existence of the induced proximal
distance H, that is unrelated to the objective function f(x), but this con-
dition is helpful only for convex f(x). In contrast, the SUMMA approach
requires that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk),

which involves the f(x) being minimized, but does not require that this
f(x) be convex.

1.5.3 Proximal Minimization

Let f : RJ → (−∞,+∞] be a convex differentiable function. Let h be
another convex function, with effective domain D, that is differentiable on
the nonempty open convex set int D. Assume that f(x) is finite on C = D
and attains its minimum value on C at x̂. The corresponding Bregman
distance Dh(x, z) is defined for x in D and z in int D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (1.19)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then
Dh(x, z) = 0 implies that x = z. Our objective is to minimize f(x) over x
in C = D.

At the kth step of a proximal minimization algorithm (PMA) [40, 26],
we minimize the function

Gk(x) = f(x) +Dh(x, xk−1), (1.20)

to get xk. The function

gk(x) = Dh(x, xk−1) (1.21)

is nonnegative and gk(xk−1) = 0. We assume that each xk lies in int D.
As we shall see,

Gk(x)−Gk(xk) ≥ Dh(x, xk) = gk+1(x) ≥ 0, (1.22)

so the PMA is in the SUMMA class.
The PMA can present some computational obstacles. When we mini-

mize Gk(x) to get xk we find that we must solve the equation

∇h(xk−1)−∇h(xk) ∈ ∂f(xk), (1.23)
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where the set ∂f(x) is the sub-differential of f at x, given by

∂f(x) := {u|〈u, y − x〉 ≤ f(y)− f(x), for all y}. (1.24)

When f(x) is differentiable, we must solve

∇f(xk) +∇h(xk) = ∇h(xk−1). (1.25)

A modification of the PMA, called the IPA for interior-point algorithm
[26, 30], is designed to overcome these computational obstacles. We discuss
the IPA in the next subsection. Another modification of the PMA that is
similar to the IPA is the forward-backward splitting (FBS) method to be
discussed in a later section.

1.5.4 The IPA

In this subsection we describe a modification of the PMA, an interior-
point algorithm called the IPA, that helps us overcome the computational
obstacles encountered in the PMA. To simplify the discussion, we assume
in this subsection that f(x) is differentiable.

At the kth step of the PMA we minimize

Gk(x) = f(x) +Dh(x, xk−1), (1.26)

where h(x) is as in the previous subsection. Writing

a(x) = h(x) + f(x), (1.27)

we must solve the equation

∇a(xk) = ∇a(xk−1)−∇f(xk−1). (1.28)

In the IPA we select a(x) so that Equation (1.28) is easily solved and so
that h(x) = a(x)−f(x) is convex and differentiable. Later in this paper we
shall present several examples of the IPA. The projected gradient descent
algorithm, discussed in the next subsection, is one such example.

1.5.5 Projected Gradient Descent

The problem now is to minimize f : RJ → R, over the closed, non-empty
convex set C, where f is convex and differentiable on RJ . We assume now
that the gradient operator ∇f is L-Lipschitz continuous; that is, for all x
and y, we have

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2. (1.29)
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To employ the IPA approach, we let 0 < γ < 1
L and select the function

a(x) =
1

2γ
‖x‖22; (1.30)

the upper bound on γ guarantees that the function h(x) = a(x) − f(x) is
convex.

At the kth step we minimize

Gk(x) = f(x) +Dh(x, xk−1)

= f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, xk−1), (1.31)

over x ∈ C. The solution xk is in C and satisfies the inequality

〈xk − (xk−1 − γ∇f(xk−1), c− xk〉 ≥ 0, (1.32)

for all c ∈ C. It follows then that

xk = PC(xk−1 − γ∇f(xk−1)); (1.33)

here PC denotes the orthogonal projection onto C. This is the projected
gradient descent algorithm. For convergence we must require that f have
certain additional properties to be discussed later. Note that the auxiliary
function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, xk−1) (1.34)

is unrelated to the set C, so is not used here to incorporate the constraint;
it is used to provide a closed-form iterative scheme.

When C = RJ we have no constraint and the problem is simply to
minimize f . Then the iterative algorithm becomes

xk = xk−1 − γ∇f(xk−1); (1.35)

this is the gradient descent algorithm.

1.5.6 Relaxed Gradient Descent

In the gradient descent method we move away from the current xk−1 by
the vector γ∇f(xk−1). In relaxed gradient descent, the magnitude of the
movement is reduced by α, where α ∈ (0, 1). Such relaxation methods are
sometimes used to accelerate convergence. The relaxed gradient descent
method can also be formulated as an AF method.
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At the kth step we minimize

Gk(x) = f(x) +
1

2γα
‖x− xk−1‖22 −Df (x, xk−1), (1.36)

obtaining

xk = xk−1 − αγ∇f(xk−1). (1.37)

1.5.7 Regularized Gradient Descent

In many applications the function to be minimized involves measured data,
which is typically noisy, as well as some less than perfect model of how the
measured data was obtained. In such cases, we may not want to minimize
f(x) exactly. In regularization methods we add to f(x) another function
that is designed to reduce sensitivity to noise and model error.

For example, suppose that we want to minimize

αf(x) +
1− α

2
‖x− p‖22, (1.38)

where p is chosen a priori.
At the kth step we minimize

Gk(x) = f(x) +
1

2γα
‖x− xk−1‖22 −

1

α
(x, xk−1)] +

1− α
2γα

‖x− p‖22, (1.39)

obtaining

xk = α(xk−1 − γ∇f(xk−1)) + (1− α)p. (1.40)

If we select p = 0 the iterative step becomes

xk = α(xk−1 − γ∇f(xk−1)). (1.41)

1.6 A Convergence Theorem

So far, we haven’t discussed the restrictions necessary to prove convergence
of these iterative algorithms. The AF framework can be helpful in this
regard, as we illustrate now.

The following theorem concerns convergence of the projected gradient
descent algorithm with iterative step given by Equation (1.33).

Theorem 1.3 Let f : RJ → R be differentiable, with L-Lipschitz con-
tinuous gradient. For γ in the interval (0, 1

L ) the sequence {xk} given by
Equation (1.33) converges to a minimizer of f , over x ∈ C, whenever
minimizers exist.
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Proof: The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, xk−1) (1.42)

can be rewritten as

gk(x) = Dh(x, xk−1), (1.43)

where

h(x) =
1

2γ
‖x‖22 − f(x). (1.44)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (1.45)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f(x)−∇f(y), x− y〉 ≥ 0. (1.46)

Since ∇f is L-Lipschitz, the inequality (1.46) holds whenever 0 < γ < 1
L .

A relatively simple calculation shows that

Gk(x)−Gk(xk) =

1

2γ
‖x− xk‖22 +

1

γ
〈xk − (xk−1 − γ∇f(xk−1)), x− xk〉. (1.47)

From Equation (1.33) it follows that

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22, (1.48)

for all x ∈ C, so that, for all x ∈ C, we have

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22 −Df (x, xk) = gk+1(x). (1.49)

Now let x̂ minimize f(x) over all x ∈ C. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),
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so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(xk) ≥ 0.

Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Let {xkn} converge to x∗

with {xkn+1} converging to x∗∗; we then have f(x∗) = f(x∗∗) = f(x̂).
Replacing the generic x̂ with x∗∗, we find that {Gkn+1(x∗∗)−Gkn+1(xkn+1)}

is decreasing. By Equation (1.47), this subsequence converges to zero;
therefore, the entire sequence {Gk(x∗∗)−Gk(xk)} converges to zero. From
the inequality in (1.48), we conclude that the sequence {‖x∗∗ − xk‖22} con-
verges to zero, and so {xk} converges to x∗∗. This completes the proof of
the theorem.



Chapter 2

Fourier Transform Data

We begin with an example from remote sensing that will illustrate several
of the issues we shall consider in more detail later.

2.1 Fourier Series Expansions

Let f(x) : [−L,L]→ C have Fourier series representation

f(x) =

∞∑
n=−∞

cne
inπx/L, (2.1)

where the Fourier coefficient cn is given by

cn =
1

2L

∫ L

−L
f(x)e−inπx/Ldx. (2.2)

We shall see how Fourier coefficients can arise as data obtained through
measurements. However, we shall be able to measure only a finite number
of the Fourier coefficients. One issue that will concern us is the effect on the
approximation of f(x) if we use some, but not all, of its Fourier coefficients.

2.2 The Discrete Fourier Transform

Suppose that we have cn for |n| ≤ N . It is not unreasonable to try to
estimate the function f(x) using the discrete Fourier transform (DFT)
estimate, which is

fDFT (x) =

N∑
n=−N

cne
inπx/L. (2.3)

19
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In Figure 2.1 below, the function f(x) is the solid-line figure in both graphs.
In the bottom graph, we see the true f(x) and a DFT estimate. The top
graph is the result of band-limited extrapolation, a technique for predicting
missing Fourier coefficients that we shall discuss later.

Figure 2.1: The non-iterative band-limited extrapolation method (MDFT)
(top) and the DFT (bottom) for 30 times over-sampled data.

2.3 The Unknown Amplitude Problem

In this example, we imagine that each point x in the interval [−L,L] is
sending a signal at the frequency ω, each with its own amplitude f(x);
that is, the signal sent by the point x is

f(x)eiωt; (2.4)

here the amplitude contains both magnitude and phase, so is complex.
We imagine that the amplitude function f(x) is unknown and we want to
determine it. It could be the case that the signals originate at the points
x, as with light or radio waves from the sun, or are simply reflected from
the points x, as is sunlight from the moon or radio waves in radar.
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Now let us consider what is received by a point P on the circumference
of a circle centered at the origin and having large radius D. The point P
corresponds to the angle θ as shown in Figure 2.2. It takes a finite time for
the signal sent from x at time t to reach P , so there is a delay.

We assume that c is the speed at which the signal propagates. Because
D is large relative to L, we make the far-field assumption, which allows us
to approximate the distance from x to P by D− x cos(θ). Therefore, what
P receives at time t from x is approximately what was sent from x at time
t− 1

c (D − x cos(θ)).
At time t, the point P receives from x the signal

f(x)eiω(t−
1
c (D−x cos(θ))), (2.5)

or

eiω(t−
1
cD)f(x)eiωx cos(θ)/c. (2.6)

Therefore, from our measurement at P , we obtain

eiω(t−
1
cD)

∫ L

−L
f(x)eiωx cos(θ)/cdx. (2.7)

Consequently, from measurements in the farfield we obtain the values∫ L

−L
f(x)eiωx cos(θ)/cdx, (2.8)

where θ can be chosen as any angle between 0 and 2π. When we select θ
so that

ω cos(θ)

c
=
nπ

L
, (2.9)

we have c−n.

2.4 Limited Data

Note that we will be able to solve Equation (2.9) for θ only if we have

|n| ≤ Lω

πc
. (2.10)

This tells us that we can measure only finitely many of the Fourier coeffi-
cients of f(x). It is common in signal processing to speak of the wavelength
of a sinusoidal signal; the wavelength associated with a given ω and c is

λ =
2πc

ω
. (2.11)
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Therefore, we can measure cn for |n| not greater than 2L
λ , which is the

length of the interval [−L,L], measured in units of wavelength λ. We
get more Fourier coefficients when the product Lω is larger; this means
that when L is small, we want ω to be large, so that λ is small and we
can measure more Fourier coefficients. As we saw previously, using these
finitely many Fourier coefficients to calculate the DFT reconstruction of
f(x) can lead to a poor estimate of f(x), particularly when we don’t have
many Fourier coefficients.

2.5 Can We Get More Data?

As we just saw, we can make measurements at any point P in the far-field;
perhaps we do not need to limit ourselves to just those angles that lead to
the limited number of Fourier coefficients cn.

We define the Fourier transform of the function f(x) to be the function

F (γ) =

∫ L

−L
f(x)eiγxdx. (2.12)

Therefore, when we measure the signals received at the point P in the
far-field, we obtain the value F (γ) for γ = ω cos(θ)/c. Therefore, in prin-
ciple, we have available to us all the values of F (γ) for γ in the interval
[−ω/c, ω/c]. These are not all of the non-zero values of F (γ), of course,
since F (γ) is band-limited, but not support-limited.

2.6 Over-Sampling

It is sometimes argued that once we have obtained all the values of cn that
are available to us, there is no more information about f(x) that we can
obtain through further measurements in the far-field; this is wrong. It may
come as somewhat of a surprise, but from the theory of complex analytic
functions we can prove that there is enough data available to us here to
reconstruct f(x) perfectly, at least in principle. The drawback, in practice,
is that the measurements would have to be free of noise and impossibly
accurate. All is not lost, however.

Suppose, for the sake of illustration, that we measure the far-field signals
at points P corresponding to angles θ that satisfy

ω cos(θ)

c
=
nπ

2L
, (2.13)

instead of
ω cos(θ)

c
=
nπ

L
.
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Now we have twice as many data points and from our new measurements
we can obtain

am =
1

4L

∫ L

−L
f(x)e−ix

mπ
2L dx =

1

4L

∫ 2L

−2L
f(x)e−ix

mπ
2L dx, (2.14)

for |m| ≤M , which are Fourier coeffcients of f(x) when viewed as a func-
tion defined on the interval [−2L, 2L], but still zero outside [−L,L]. We
say now that our data is twice over-sampled. Note that we call it over-
sampled because the rate at which we are sampling is higher, even though
the distance between samples is lower.

For clarity, let us denote the function defined on the interval [−2L, 2L]
that equals f(x) for x in [−L,L] and is equal to zero elsewhere as g(x).
We have twice the number of Fourier coefficients that we had previously,
but for the function g(x). A DFT reconstruction using this larger set of
Fourier coefficients will reconstruct g(x) on the interval [−2L, 2L]; this
DFT estimate is

gDFT (x) =

M∑
m=−M

ame
imπx/2L, (2.15)

for |x| ≤ 2L. This will give us a reconstruction of f(x) itself over the
interval [−L,L], but will also give us a reconstruction of the rest of g(x),
which we already know to be zero. So we are wasting the additional data
by reconstructing g(x) instead of f(x). We need to use our prior knowledge
that g(x) = 0 for L < |x| ≤ 2L.

We want to use the prior knowledge that f(x) = 0 for L < |x| ≤ 2L
to improve our reconstruction. Suppose that we take as our reconstruction
the modified DFT (MDFT) [13]:

fMDFT (x) =

M∑
j=−M

bje
ijπx/2L, (2.16)

for |x| ≤ L, and zero elsewhere, with the bj chosen so that fMDFT (x)
is consistent with the measured data. Calculating this estimator involves
solving a system of linear equations for the bj .

We must have

am =
1

4L

∫ L

−L
fMDFT (x)e−ix

mπ
2L dx, (2.17)

for |m| ≤M . Since∫ L

−L
eix

jπ
2L e−ix

mπ
2L dx = 2L

sin(j −m)π/2

(j −m)π/2
, (2.18)
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the system to be solved for the bj is

am =
1

2

M∑
j=−M

bj
sin(j −m)π/2

(j −m)π/2
, (2.19)

for |m| ≤ M . The top graph in Figure (2.1) illustrates the improvement
over the DFT that can be had using the MDFT. In that figure, we took
data that was thirty times over-sampled, not just twice over-sampled, as in
our previous discussion. Consequently, we had thirty times the number of
Fourier coefficients we would have had otherwise, but for an interval thirty
times longer. To get the top graph, we used the MDFT, with the prior
knowledge that f(x) was non-zero only within the central thirtieth of the
long interval. The bottom graph shows the DFT reconstruction using the
larger data set, but only for the central thirtieth of the full period, which
is where the original f(x) is non-zero.

2.7 Band-Limited Extrapolation

Once we have solved the system of linear equations in (2.19) for the bj ,
we can use Equation (2.19) with any integer values of m to obtain the
Fourier coeffcients of fMDFT (x) that were not measured. In this way, we
extrapolate the measured data to an infinite sequence. These extrapolated
values are the true Fourier coeffcients of fMDFT (x), but estimated values
of the unmeasured Fourier coeffcients of f(x) itself.

2.8 A Projection-Based View

When we view the function f(x) as a member of the Hilbert space L2(−L,L),
we find that the DFT estimate of f(x) is the orthogonal projection of the
zero function onto the closed convex subset of all members of L2(−L,L)
that are consistent with the data; that is, the DFT estimate is the member
of L2(−L,L) that has minimum norm among all those members consis-
tent with the data. The MDFT estimate is the member of L2(−2L, 2L) of
minimum norm among all members that are both consistent with the data
and supported on the interval [−L,L]. The MDFT estimate is also the
member of L2(−L,L) of minimum norm consistent with the over-sampled
data. The MDFT is not the DFT in this case, since the functions eijπx/2L

are not orthogonal with respect to the usual inner product on L2(−L,L).

2.9 Other Forms of Prior Knowledge

As we just showed, knowing that we have over-sampled in our measure-
ments can help us improve the resolution in our estimate of f(x). We may
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have other forms of prior knowledge about f(x) that we can use. If we know
something about large-scale features of f(x), but not about finer details,
we can use the PDFT estimate, which is a generalization of the MDFT
[14, 15].

We can write the MDFT estimate above as

fMDFT (x) = χ[−L,L](x)

M∑
j=−M

bje
ijπx/2L; (2.20)

here χ[−L,L](x) is one for |x| ≤ L, and zero, otherwise. Written this way,
we see that the second factor has the algebraic form of the DFT estimate,
while the first factor incorporates our prior knowledge that f(x) is zero for
|x| > L.

Suppose that we have some prior knowledge of the function |f(x)| be-
yond simply support information. Let us select p(x) > 0 as a prior estimate
of |f(x)| and let our PDFT estimate of f(x) have the form

fPDFT (x) = p(x)

M∑
j=−M

dje
ijπx/2L, (2.21)

with the coefficients dj computed by forcing fPDFT (x) to be consistent with
the measured data. Again, this involves solving a system of linear equa-
tions, although there are other ways to handle this. The PDFT approach
extends to higher dimensions, as we illustrate in the following example.

The original image on the upper right of Figure 2.3 is a discrete rect-
angular array of intensity values simulating a slice of a head. The data
was obtained by taking the two-dimensional discrete Fourier transform of
the original image, and then discarding, that is, setting to zero, all these
spatial frequency values, except for those in a smaller rectangular region
around the origin. The problem then is under-determined. A minimum-
norm solution would seem to be a reasonable reconstruction method.

The DFT reconstruction is the minimum-two-norm solution shown on
the lower right. It is calculated simply by performing an inverse discrete
Fourier transform on the array of retained discrete Fourier transform values.
The original image has relatively large values where the skull is located,
but the minimum-norm reconstruction does not want such high values; the
norm involves the sum of squares of intensities, and high values contribute
disproportionately to the norm. Consequently, the minimum-norm recon-
struction chooses instead to conform to the measured data by spreading
what should be the skull intensities throughout the interior of the skull.
The minimum-norm reconstruction does tell us something about the orig-
inal; it tells us about the existence of the skull itself, which, of course, is
indeed a prominent feature of the original. However, in all likelihood, we
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would already know about the skull; it would be the interior that we want
to know about.

Using our knowledge of the presence of a skull, which we might have ob-
tained from the minimum-norm reconstruction itself, we construct the prior
estimate shown in the upper left. Now we use the same data as before, and
calculate a minimum-weighted-norm reconstruction, using as the weight
vector the reciprocals of the values of the prior image. This minimum-
weighted-norm reconstruction is shown on the lower left; it is clearly almost
the same as the original image. The calculation of the minimum-weighted
norm solution can be done iteratively using the ART algorithm [73].

When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an effect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know.
As this example, and many others, show, the information we seek is often
still in the data, but needs to be brought out in a more subtle way.

2.10 A Broader View

In the cases just discussed we have linear data pertaining to an unknown
function that we wish to approximate. We view the function as a member of
a Hilbert space and the data as linear functional values. To be more specific,
we take f to be a member of a Hilbert space H having inner product 〈f, g〉,
and model the measured data βn as βn = 〈f, gn〉, where the gn are known

members of H and |n| ≤ N . The minimum-norm approximation of f is f̂
given by

f̂ =

N∑
m=−N

αmgm, (2.22)

where the αm are found by solving the system of linear equations

βn =

N∑
m=−N

〈gm, gn〉αm, (2.23)

for |n| ≤ N .
When we have the limited data

cn =
1

2L

∫ L

−L
f(x)e−inπx/Ldx, (2.24)
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for |n| ≤ N , it is natural to imagine f(x) to be in the Hilbert space
L2(−L,L) and for the inner product to be the usual one. In that case,
the minimum-norm approximation of f(x) is the DFT, which is a linear
combination of the functions

gn(x) = einπx/L. (2.25)

But we can rewrite Equation (2.24) as

cn =
1

2L

∫ L

−L
f(x)p(x)e−inπx/L p(x)−1dx. (2.26)

Now we may consider f(x) to be a member of the Hilbert space having the
inner product

〈f, g〉 =

∫ L

−L
f(x)g(x)p(x)−1dx. (2.27)

Now the gn(x) are the functions

gn(x) = p(x)einπx/L, (2.28)

and the minimum-norm solution in this weighted L2 space is the PDFT,
which is a linear combination of these new gn(x).

2.11 Lessons Learned

For f : [−L,L]→ C, the Fourier coeffcients of f(x) are values of the Fourier
transform F (γ), at the values γ = nπ

L . According to the Shannon Sampling
Theorem, the band-limited function F (γ) can be completely recovered from
the values F (nπL ), which is just another way of saying that F (γ) can be
determined from knowledge of f(x), which we would have if we knew all
its Fourier coeffcients. The spacing ∆ = π

L between the samples of F (γ) is
called the Nyquist spacing.

In the unknown-amplitude problem considered previously, we were able
to measure F (nπL ) for only those n with |n| ≤ N . It would be wrong,
however, to conclude that Shannon’s Theorem tells us that there is no fur-
ther information to be had by measuring at other points P in the farfield;
Shannon’s Theorem tells us that the infinitely many samples at the Nyquist
spacing are sufficient, but not finitely many. By over-sampling we can ob-
tain further data pertaining to f(x) which can help us improve the estimate,
providing that we process it properly.

In our discussion of the MDFT, we over-sampled by a factor of two
and in Figure 2.1 we over-sampled by a factor of thirty. There is a prac-
tical limit to how much over-sampling can be used, however. The matrix
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that occurs in the system of equations (2.19) will become increasingly ill-
conditioned as the degree of over-sampling increases, until slight errors in
the measurements will cause the MDFT estimate to be unusable. We can
guard against this ill-conditioning, up to a point, by adding to this matrix
a small positive multiple of the identity matrix.

The ill-conditioning can be turned to our advantage sometimes, though.
If we calculate the MDFT estimate for f(x), assuming that f(x) is sup-
ported on the interval [−L,L], but f(x) is not exactly zero outside this
interval, then the MDFT estimate will reflect this error, and have an un-
realistically high norm. If we do not know the exact support of f(x), we
can perform several MDFT estimates, each with different guesses as to the
true support. When these guesses are too small, we will get a high norm;
when we have selected an interval that does support f(x), the norm will be
much more reasonable. This idea was used to develop a method for solving
the phase problem [18].

In the phase problem our data are |cn|, not cn. In [18] we used the
MDFT approximation based on estimates of the true phases combined
with the magnitude data. When the phases were incorrect the norm of the
MDFT approximation was too high. By monitoring the MDFT norm, we
were able to modify the phases iteratvely, to approach the correct values
and obtain a decent reconstruction of the image.

When we have limited linear functional data pertaining to f(x) it is
reasonable to consider a minimum-norm approximation, subject to data
consistency. At the same time, it is important to keep in mind that there
will be multiple ways to represent the linear functional data, each corre-
sponding to the particular ambient Hilbert space that we choose to use.
Projection onto closed convex sets is a useful tool for incorporating hard
constraints, such as data consistency, while the proper choice of the ambient
Hilbert space can help us include soft constraints, such as prior knowledge
of the general shape of the function being estimated.

Hilbert space norms are the easiest to deal with, but there is good
reason to consider minimum-norm solutions for norms that are not Hilbert
space norms, such as the L1 or l1 norms. As we shall see in subsequent
chapters, some constraints, such as non-negativity, can be imposed through
the use of distance measures like the Bregman distances that do not come
from Hilbert space or Banach space norms.

2.12 Continuous or Discrete?

Throughout this chapter we have considered only the reconstruction of a
function of a continuous real variable, although we could have extended the
discussion to the multi-variate case. Obviously, at the end of the estimation
process we must have a discrete version of our estimator in order to plot a
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graph or make an image. It is also possible to perform the discretization
step earlier in the process. Transforming the problem into the estimation
of a finite vector can simplify the calculations in the PDFT, for example.

Suppose that our data is

cn =
1

2L

∫ L

−L
f(x)e−inπx/Ldx, (2.29)

for |n| ≤ N . The system of equations that we must solve to get the coeff-
cients dj in Equation (2.21) is

2πcn =

N∑
j=−N

djP ((j − n)π/L), (2.30)

where P (γ) is the Fourier transform of p(x) given by

P (γ) =

∫ L

−L
p(x)eixγdx. (2.31)

Calculating the needed values of P (γ) can be difficult, especially in two
dimensional image-processing problems. As was demonstrated in [72, 73],
discretizing the problem at the beginning makes it possible to avoid this
computation. The PDFT is a minimum-weighted-norm solution and its dis-
crete version can be found using an iterative ART or Landweber algorithm
and a discrete approximation of p(x).

2.13 A Projection-Based Characterization of
Bregman Distances

Suppose that X is a member of a Hilbert space H that we wish to estimate
from data values

dm = 〈X,Gm〉, (2.32)

for m = 1, ..., N . The member Y of H of smallest norm that is also consis-
tent with the data is

Y =

N∑
n=1

anGn, (2.33)

where the an are determined by making Y consistent with the data, which
means solving the system of linear equations

dm =

N∑
n=1

an〈Gn, Gm〉, (2.34)
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for m = 1, ..., N . It follows from the orthogonality principle in Hilbert
space that, among all members of the subspace G of H spanned by the
set {G1, ..., GN}, the one closest to X is Y . The orthogonal projection
of 0 onto the affine set of data-consistent members of H is also the best
approximation of X in G.

As we have seen, a useful method for reconstructing an unknown func-
tion from limited linear-functional data is to project a prior estimate of the
function onto the subset of functions consistent with the data. The distance
measure used is often a Hilbert-space distance, but other distances, such
as the l1 distance or the Kullback-Leibler (cross-entropy) distance are also
helpful choices. In this section we consider the problem of reconstructing
a positive function R(x), given the data

rn =

∫
R(x)gn(x)dx, (2.35)

for n = 1, ..., N . The distance we use has the form

D(Q,P ) =

∫
f(Q(x), P (x))dx, (2.36)

where Q(x) and P (x) are positive functions and f : R2 → R+ satisfies
certain conditions to be presented shortly. The estimation procedure is the
following: given a prior estimate P (x) > 0 of R(x), we obtain our estimate
Q(x) = S(x) by minimizing D(Q,P ) over all Q(x) ∈ Q, where Q denotes
the collection of all positive functions Q(x) consistent with the data.

Our goal in reconstruction is to use the data to find a function that is
close to R(x) in some reasonable sense. In the cases considered previously
in this chapter, we have always forced our reconstruction to be consistent
with the data. It is not obvious that minimizing D(Q,P ) over all Q ∈ Q
necessarily provides an estimate S(x) that is close to R(x). Perhaps simply
asking that the reconstruction be consistent with the data is not making
the best use of the data. But what else can we do? It would be comforting
to know that forcing data consistency is a good idea.

From the Euler-Lagrange differential equation we know that

fy(S(x), P (x)) =

N∑
n=1

angn(x), (2.37)

for some coefficients an chosen to make S(x) consistent with the data. Let
T be the collection of all positive functions T (x) with the property that

fy(T (x), P (x)) =

N∑
n=1

tngn(x), (2.38)
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for some choice of coefficients tn. The question we ask in this section is the
following: for which distances D do we always have

argmint∈TD(R, T ) = argminQ∈QD(Q,P )? (2.39)

To be clear, we are asking that, for fixed P (x) and fixed gn(x), n = 1, ..., N ,
Equation (2.39) hold, for any choice of R(x) and the rn. In other words,
is the data-consistent solution of Equation (2.38) always the solution of
Equation (2.38) closest to R? As we shall see, the property in Equation
(2.39), called directed orthogonality in [52], characterizes distances D that
have the algebraic form of Bregman distances.

In order for the distance given by Equation (2.36) to have the property
D(P, P ) = 0 we assume that f(y, y) = 0, for all y > 0. In order to have
D(Q,P ) ≥ D(P, P ) we assume that fy(y, y) = 0, for all y > 0. We also
want D(Q,P ) to be strictly convex in the variable Q, so we assume that
fyy(y, z) > 0, for all y > 0 and z > 0.

In [52] it was shown that, under suitable technical restrictions, if D has
the directed orthogonality property, then fzyy(y, z) = 0, for all y > 0 and
z > 0. From this, it follows that

f(y, z) = J(y)− J(z)− J ′(z)(y − z), (2.40)

where J
′′
(z) > 0. Therefore, D has the algebraic form of a Bregman dis-

tance. It was also established in [52] that D has the directed orthogonality
property if and only if the triangle equality always holds; that is,

D(R,P ) = D(R,S) +D(S, P ). (2.41)
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Figure 2.2: Farfield Measurements. The distance from x to P is approxi-
mately D − x cos θ.
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Figure 2.3: Extracting information in image reconstruction. The original
is in the upper right, the DFT is the minimum-two-norm reconstruction,
the PDFT is a minimum-weighted-two-norm reconstruction, and the top
left is the prior estimate.
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Chapter 3

Barrier-function Methods

3.1 Barrier Functions

Let b(x) : RJ → (−∞,+∞] be continuous, with effective domain the set

D = {x| b(x) < +∞}.

The goal is to minimize the objective function f(x), over x in C, the closure
of D. We assume that there is x̂ ∈ C with f(x̂) ≤ f(x), for all x in C.

In the barrier-function method, we minimize

Bk(x) = f(x) +
1

k
b(x) (3.1)

over x in D to get xk. Each xk lies within D, so the method is an interior-
point algorithm. If the sequence {xk} converges, the limit vector x∗ will
be in C and f(x∗) = f(x̂).

Barrier functions typically have the property that b(x) → +∞ as x
approaches the boundary of D, so not only is xk prevented from leaving
D, it is discouraged from approaching the boundary.

3.2 Examples of Barrier Functions

Consider the convex programming (CP) problem of minimizing the convex
function f : RJ → R, subject to gi(x) ≤ 0, where each gi : RJ → R is
convex, for i = 1, ..., I. Let D = {x|gi(x) < 0, i = 1, ..., I}; then D is open.
We consider two barrier functions appropriate for this problem.

35
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3.2.1 The Logarithmic Barrier Function

A suitable barrier function is the logarithmic barrier function

b(x) =
(
−

I∑
i=1

log(−gi(x))
)
. (3.2)

The function − log(−gi(x)) is defined only for those x in D, and is positive
for gi(x) > −1. If gi(x) is near zero, then so is −gi(x) and b(x) will be
large.

3.2.2 The Inverse Barrier Function

Another suitable barrier function is the inverse barrier function

b(x) =

I∑
i=1

−1

gi(x)
, (3.3)

defined for those x in D.
In both examples, when k is small, the minimization pays more at-

tention to b(x), and less to f(x), forcing the gi(x) to be large negative
numbers. But, as k grows larger, more attention is paid to minimizing
f(x) and the gi(x) are allowed to be smaller negative numbers. By let-
ting k → ∞, we obtain an iterative method for solving the constrained
minimization problem.

Barrier-function methods are particular cases of the SUMMA. The it-
erative step of the barrier-function method can be formulated as follows:
minimize

f(x) + [(k − 1)f(x) + b(x)] (3.4)

to get xk. Since, for k = 2, 3, ..., the function

(k − 1)f(x) + b(x) (3.5)

is minimized by xk−1, the function

gk(x) = (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1) (3.6)

is nonnegative, and xk minimizes the function

Gk(x) = f(x) + gk(x). (3.7)

From

Gk(x) = f(x) + (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1),
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it follows that

Gk(x)−Gk(xk) = kf(x) + b(x)− kf(xk)− b(xk) = gk+1(x),

so that gk+1(x) satisfies the condition in (1.18). This shows that the barrier-
function method is a particular case of SUMMA.

From the properties of SUMMA algorithms, we conclude that {f(xk)}
is decreasing to f(x̂), and that {gk(xk)} converges to zero. From the non-
negativity of gk(xk) we have that

(k − 1)(f(xk)− f(xk−1)) ≥ b(xk−1)− b(xk).

Since the sequence {f(xk)} is decreasing, the sequence {b(xk)} must be
increasing, but might not be bounded above.

If x̂ is unique, and f(x) has bounded level sets, then it follows, from our
discussion of SUMMA, that {xk} → x̂. Suppose now that x̂ is not known
to be unique, but can be chosen in D, so that Gk(x̂) is finite for each k.
From

f(x̂) +
1

k
b(x̂) ≥ f(xk) +

1

k
b(xk)

we have
1

k

(
b(x̂)− b(xk)

)
≥ f(xk)− f(x̂) ≥ 0,

so that
b(x̂)− b(xk) ≥ 0,

for all k. If either f or b has bounded level sets, then the sequence {xk} is
bounded and has a cluster point, x∗ in C. It follows that b(x∗) ≤ b(x̂) <
+∞, so that x∗ is in D. If we assume that f(x) is convex and b(x) is
strictly convex on D, then we can show that x∗ is unique in D, so that
x∗ = x̂ and {xk} → x̂.

To see this, assume, to the contrary, that there are two distinct cluster
points x∗ and x∗∗ in D, with

{xkn} → x∗,

and
{xjn} → x∗∗.

Without loss of generality, we assume that

0 < kn < jn < kn+1,

for all n, so that
b(xkn) ≤ b(xjn) ≤ b(xkn+1).

Therefore,
b(x∗) = b(x∗∗) ≤ b(x̂).
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From the strict convexity of b(x) on the set D, and the convexity of f(x),
we conclude that, for 0 < λ < 1 and y = (1 − λ)x∗ + λx∗∗, we have
b(y) < b(x∗) and f(y) ≤ f(x∗). But, we must then have f(y) = f(x∗).
There must then be some kn such that

Gkn(y) = f(y) +
1

kn
b(y) < f(xkn) +

1

kn
b(xkn) = Gkn(xkn).

But, this is a contradiction.

The following theorem summarizes what we have shown with regard to
the barrier-function method.

Theorem 3.1 Let f : RJ → (−∞,+∞] be a continuous function. Let
b(x) : RJ → (0,+∞] be a continuous function, with effective domain the
nonempty set D. Let x̂ minimize f(x) over all x in C = D. For each
positive integer k, let xk minimize the function f(x) + 1

k b(x). Then the
sequence {f(xk)} is monotonically decreasing to the limit f(x̂), and the
sequence {b(xk)} is increasing. If x̂ is unique, and f(x) has bounded level
sets, then the sequence {xk} converges to x̂. In particular, if x̂ can be chosen
in D, if either f(x) or b(x) has bounded level sets, if f(x) is convex and if
b(x) is strictly convex on D, then x̂ is unique in D and {xk} converges to
x̂.

At the kth step of the barrier method we must minimize the function
f(x) + 1

k b(x). In practice, this must also be performed iteratively, with,
say, the Newton-Raphson algorithm. It is important, therefore, that bar-
rier functions be selected so that relatively few Newton-Raphson steps are
needed to produce acceptable solutions to the main problem. For more on
these issues see Renegar [68] and Nesterov and Nemirovski [66].



Chapter 4

Penalty-function Methods

4.1 Interior- and Exterior-Point Methods

When we add a barrier function to f(x) we restrict the domain. When
the barrier function is used in a sequential unconstrained minimization
algorithm, the vector xk that minimizes the function f(x)+ 1

k b(x) lies in the
effective domain D of b(x), and we proved that, under certain conditions,
the sequence {xk} converges to a minimizer of the function f(x) over the
closure of D. The constraint of lying within the set D is satisfied at every
step of the algorithm; for that reason such algorithms are called interior-
point methods. Constraints may also be imposed using a penalty function.
In this case, violations of the constraints are discouraged, but not forbidden.
When a penalty function is used in a sequential unconstrained minimization
algorithm, the xk need not satisfy the constraints; only the limit vector need
be feasible.

4.2 Examples of Penalty Functions

Consider the convex programming problem. We wish to minimize the con-
vex function f(x) over all x for which the convex functions gi(x) ≤ 0, for
i = 1, ..., I. At the kth step of a penalty-function algorithm we minimize
the function

Pk(x) = f(x) + kp(x), (4.1)

to get xk.

39
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4.2.1 The Absolute-Value Penalty Function

We let g+i (x) = max{gi(x), 0}, and

p(x) =

I∑
i=1

g+i (x). (4.2)

This is the Absolute-Value penalty function; it penalizes violations of the
constraints gi(x) ≤ 0, but does not forbid such violations. Then, for
k = 1, 2, ..., we minimize Pk(x) to get xk. As k → +∞, the penalty
function becomes more heavily weighted, so that, in the limit, the con-
straints gi(x) ≤ 0 should hold. Because only the limit vector satisfies the
constraints, and the xk are allowed to violate them, such a method is called
an exterior-point method.

4.2.2 The Courant-Beltrami Penalty Function

The Courant-Beltrami penalty-function method is similar, but uses

p(x) =

I∑
i=1

[g+i (x)]2. (4.3)

4.2.3 The Quadratic-Loss Penalty Function

Penalty methods can also be used with equality constraints. Consider the
problem of minimizing the convex function f(x), subject to the constraints
gi(x) = 0, i = 1, ..., I. The quadratic-loss penalty function is

p(x) =
1

2

I∑
i=1

(gi(x))2. (4.4)

The inclusion of a penalty term can serve purposes other than to impose
constraints on the location of the limit vector. In image processing, it is
often desirable to obtain a reconstructed image that is locally smooth, but
with well defined edges. Penalty functions that favor such images can then
be used in the iterative reconstruction [48]. We survey several instances in
which we would want to use a penalized objective function.

4.2.4 Regularized Least-Squares

Suppose we want to solve the system of equations Ax = b. The prob-
lem may have no exact solution, precisely one solution, or there may be
infinitely many solutions. If we minimize the function

f(x) =
1

2
‖Ax− b‖22,
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we get a least-squares solution, generally, and an exact solution, whenever
exact solutions exist. When the matrix A is ill-conditioned, small changes
in the vector b can lead to large changes in the solution. When the vector
b comes from measured data, the entries of b may include measurement
errors, so that an exact solution of Ax = b may be undesirable, even
when such exact solutions exist; exact solutions may correspond to x with
unacceptably large norm, for example. In such cases, we may, instead, wish
to minimize a function such as

1

2
‖Ax− b‖22 +

ε

2
‖x− z‖22, (4.5)

for some vector z. If z = 0, the minimizing vector xε is then a norm-
constrained least-squares solution. We then say that the least-squares prob-
lem has been regularized. In the limit, as ε→ 0, these regularized solutions
xε converge to the least-squares solution closest to z.

Suppose the system Ax = b has infinitely many exact solutions. Our
problem is to select one. Let us select z that incorporates features of the
desired solution, to the extent that we know them a priori. Then, as ε→ 0,
the vectors xε converge to the exact solution closest to z. For example,
taking z = 0 leads to the minimum-norm solution.

4.2.5 Minimizing Cross-Entropy

In image processing, it is common to encounter systems Px = y in which all
the terms are non-negative. In such cases, it may be desirable to solve the
system Px = y, approximately, perhaps, by minimizing the cross-entropy
or Kullback-Leibler distance

KL(y, Px) =

I∑
i=1

(
yi log

yi
(Px)i

+ (Px)i − yi
)
, (4.6)

over vectors x ≥ 0. When the vector y is noisy, the resulting solution,
viewed as an image, can be unacceptable. It is wise, therefore, to add a
penalty term, such as p(x) = εKL(z, x), where z > 0 is a prior estimate of
the desired x [56, 74, 57, 20].

A similar problem involves minimizing the function KL(Px, y). Once
again, noisy results can be avoided by including a penalty term, such as
p(x) = εKL(x, z) [20].

4.2.6 The Lagrangian in Convex Programming

When there is a sensitivity vector λ for the CP problem, minimizing f(x)
is equivalent to minimizing the Lagrangian,

f(x) +

I∑
i=1

λigi(x) = f(x) + p(x); (4.7)
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in this case, the addition of the second term, p(x), serves to incorporate
the constraints gi(x) ≤ 0 in the function to be minimized, turning a con-
strained minimization problem into an unconstrained one. The problem of
minimizing the Lagrangian still remains, though. We may have to solve
that problem using an iterative algorithm.

4.2.7 Infimal Convolution

The infimal convolution of the functions f and g is defined as

(f ⊕ g)(z) = inf
x

{
f(x) + g(z − x)

}
.

The infimal deconvolution of f and g is defined as

(f 	 g)(z) = sup
x

{
f(z − x)− g(x)

}
.

4.2.8 Moreau’s Proximity-Function Method

The Moreau envelope of the function f is the function

mf (z) = inf
x

{
f(x) +

1

2
‖x− z‖22

}
, (4.8)

which is also the infimal convolution of the functions f(x) and 1
2‖x‖

2
2. It

can be shown that the infimum is uniquely attained at the point denoted
x = proxfz (see [69]). In similar fashion, we can define mf∗z and proxf∗z,
where f∗(z) denotes the function conjugate to f .

Let z be fixed and x̂ minimize the function

f(x) +
1

2γ
‖x− z‖22. (4.9)

Then we have

0 ∈ ∂f(x̂) +
1

γ
(x̂− z),

or
z − x̂ ∈ ∂(γf)(x̂).

If z − x ∈ ∂f(x) and z − y ∈ ∂f(y), then x = y: we have

f(y)− f(x) ≥ 〈z − x, y − x〉,

and
f(x)− f(y) ≥ 〈z − y, x− y〉 = −〈z − y, y − x〉.

Adding, we get
0 ≥ 〈y − x, y − x〉 = ‖x− y‖22.
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We can then say that x = proxf (z) is characterized by the inequality

z − x ∈ ∂f(x). (4.10)

Consequently, we can write

x̂ = proxγf (z).

Proposition 4.1 The infimum of mf (z), over all z, is the same as the
infimum of f(x), over all x.

Proof: We have

inf
z
mf (z) = inf

z
inf
x
{f(x) +

1

2
‖x− z‖22}

= inf
x

inf
z
{f(x) +

1

2
‖x− z‖22} = inf

x
{f(x) +

1

2
inf
z
‖x− z‖22} = inf

x
f(x).

The minimizers of mf (z) and f(x) are the same, as well. Therefore,
one way to use Moreau’s method is to replace the original problem of
minimizing the possibly non-smooth function f(x) with the problem of
minimizing the smooth functionmf (z). Another way is to convert Moreau’s
method into a sequential minimization algorithm, replacing z with xk−1

and minimizing with respect to x to get xk. This leads to the proximal
minimization algorithm.

4.3 Basic Facts

Again, our objective is to find a sequence {xk} such that {f(xk)} → d.
We select a penalty function p(x) with p(x) ≥ 0 and p(x) = 0 if and only
if x is in C. For k = 1, 2, ..., let xk be a minimizer of the function Pk(x).
As we shall see, we can formulate this penalty-function algorithm as a
barrier-function iteration.

In order to relate penalty-function methods to barrier-function meth-
ods, we note that minimizing Pk(x) = f(x) + kp(x) is equivalent to mini-
mizing p(x)+ 1

kf(x). This is the form of the barrier-function iteration, with
p(x) now in the role previously played by f(x), and f(x) now in the role
previously played by b(x). We are not concerned here with the effective
domain of f(x). Therefore, we can now mimic most, but not all, of what
we did for barrier-function methods. We assume that there is a real α such
that α ≤ f(x), for all x in RJ .

Lemma 4.1 The sequence {Pk(xk)} is increasing, bounded above by d and
converges to some γ ≤ d.
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Proof: We have

Pk(xk) ≤ Pk(xk+1) ≤ Pk(xk+1) + p(xk+1) = Pk+1(xk+1).

Also, for any z ∈ C, and for each k, we have

f(z) = f(z) + kp(z) = Pk(z) ≥ Pk(xk);

therefore d ≥ γ.

Lemma 4.2 The sequence {p(xk)} is decreasing to zero, the sequence {f(xk)}
is increasing and converging to some β ≤ d.

Proof: Since xk minimizes Pk(x) and xk+1 minimizes Pk+1(x), we have

f(xk) + kp(xk) ≤ f(xk+1) + kp(xk+1),

and
f(xk+1) + (k + 1)p(xk+1) ≤ f(xk) + (k + 1)p(xk).

Consequently, we have

(k + 1)[p(xk)− p(xk+1)] ≥ f(xk+1)− f(xk) ≥ k[p(xk)− p(xk+1)].

Therefore,
p(xk)− p(xk+1) ≥ 0,

and
f(xk+1)− f(xk) ≥ 0.

From
f(xk) ≤ f(xk) + kp(xk) = Pk(xk) ≤ γ ≤ d,

it follows that the sequence {f(xk)} is increasing and converges to some
β ≤ γ. Since

α+ kp(xk) ≤ f(xk) + kp(xk) = Pk(xk) ≤ γ

for all k, we have 0 ≤ kp(xk) ≤ γ − α. Therefore, the sequence {p(xk)}
converges to zero.

We want β = d. To obtain this result, it appears that we need to make
more assumptions: we assume, therefore, that X is a complete metric
space, C is closed in X, the functions f and p are continuous and f has
compact level sets. From these assumptions, we are able to assert that the
sequence {xk} is bounded, so that there is a convergent subsequence; let
{xkn} → x∗. It follows that p(x∗) = 0, so that x∗ is in C. Then

f(x∗) = f(x∗)+p(x∗) = lim
n→+∞

(f(xkn)+p(xkn)) ≤ lim
n→+∞

Pkn(xkn) = γ ≤ d.

But x∗ ∈ C, so f(x∗) ≥ d. Therefore, f(x∗) = d.
It may seem odd that we are trying to minimize f(x) over the set C

using a sequence {xk} with {f(xk)} increasing, but remember that these
xk are not in C.
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Definition 4.1 Let X be a complete metric space. A real-valued function
p(x) on X has compact level sets if, for all real γ, the level set {x|p(x) ≤ γ}
is compact.

Theorem 4.1 Let X be a complete metric space, f(x) be a continuous
function, and the restriction of f(x) to x in C have compact level sets.
Then the sequence {xk} is bounded and has convergent subsequences. Fur-
thermore, f(x∗) = d, for any subsequential limit point x∗ ∈ X. If x̂ is the
unique minimizer of f(x) for x ∈ C, then x∗ = x̂ and {xk} → x̂.

Proof: From the previous theorem we have f(x∗) = d, for all subsequential
limit points x∗. But, by uniqueness, x∗ = x̂, and so {xk} → x̂.

Corollary 4.1 Let C ⊆ RJ be closed and convex. Let f(x) : RJ → R be
closed, proper and convex. If x̂ is the unique minimizer of f(x) over x ∈ C,
the sequence {xk} converges to x̂.

Proof: Let ιC(x) be the indicator function of the set C, that is, ιC(x) = 0,
for all x in C, and ιC(x) = +∞, otherwise. Then the function g(x) =
f(x) + ιC(x) is closed, proper and convex. If x̂ is unique, then we have

{x|f(x) + ιC(x) ≤ f(x̂)} = {x̂}.

Therefore, one of the level sets of g(x) is bounded and nonempty. It follows
from Corollary 8.7.1 of [69] that every level set of g(x) is bounded, so that
the sequence {xk} is bounded.

If x̂ is not unique, we can still prove convergence of the sequence {xk},
for particular cases of SUMMA.
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Chapter 5

Proximal Minimization

In this chapter we consider the use of Bregman distances in constrained
optimization through the proximal minimization method. The proximal
minimization algorithm (PMA) is in the SUMMA class and this fact is
used to establish important properties of the PMA. A detailed discussion
of the PMA and its history is found in the book by Censor and Zenios [40].

5.1 The Basic Problem

We want to minimize a convex function f : RJ → R over a closed, non-
empty convex subset C ⊆ RJ . If the problem is ill-conditioned in some way,
perhaps because the function f(x) is not strictly convex, then regularization
is needed.

For example, the least-squares approximate solution of Ax = b is ob-
tained by minimizing the function f(x) = 1

2‖Ax − b‖
2
2 over all x. When

the matrix A is ill-conditioned the least-squares solution may have a large
two-norm. To regularize the least-squares problem we can impose a norm
constraint and minimize

1

2
‖Ax− b‖22 +

ε

2
‖x‖22, (5.1)

where ε > 0 is small.
Returning to our original problem, we can impose strict convexity and

regularize by minimizing the function

f(x) +
1

2k
‖x− a‖22 (5.2)

to get xk, for some selected vector a and k = 1, 2, .... One difficulty with
this approach is that, for small k, there may be too much emphasis on

47
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the second term in Equation (5.2), while the problem becomes increasingly
ill-conditioned as k increases. As pointed out in [40], one way out of this
difficulty is to obtain xk by minimizing

f(x) +
γ

2
‖x− xk−1‖22. (5.3)

This suggests a more general technique for constrained optimization, called
proximal minimization with D-functions in [40].

5.2 Proximal Minimization

Let f : RJ → (−∞,+∞] be a closed, proper, and convex function. Let h
be a closed proper convex function, with effective domain D, that is differ-
entiable on the nonempty open convex set int D. Assume that f(x) is finite
on C = D and attains its minimum value on C at x̂. The corresponding
Bregman distance Dh(x, z) is defined for x in D and z in int D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (5.4)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then
Dh(x, z) = 0 implies that x = z. Our objective is to minimize f(x) over x
in C = D.

At the kth step of the proximal minimization algorithm (PMA) with
D-functions [40, 26], we minimize the function

Gk(x) = f(x) +Dh(x, xk−1), (5.5)

to get xk. The function

gk(x) = Dh(x, xk−1) (5.6)

is nonnegative and gk(xk−1) = 0. We assume that each xk lies in the
interior of D. The quadratic PMA described in Equation (5.3) uses the
function h(x) = γ

2 ‖x‖
2
2.

5.3 The PMA is in SUMMA

We show now that the PMA is a particular case of the SUMMA. We remind
the reader that f(x) is now assumed to be convex.

Lemma 5.1 For each k we have

Gk(x)−Gk(xk) ≥ Dh(x, xk) = gk+1(x). (5.7)
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Proof: Since xk minimizes Gk(x) within the set D, we have

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1), (5.8)

so that

∇h(xk−1) = uk +∇h(xk), (5.9)

for some uk in ∂f(xk). Then

Gk(x)−Gk(xk) = f(x)− f(xk) + h(x)− h(xk)− 〈∇h(xk−1), x− xk〉.

Now substitute, using Equation (5.9), to get

Gk(x)−Gk(xk) = f(x)− f(xk)− 〈uk, x− xk〉+Dh(x, xk). (5.10)

Therefore,
Gk(x)−Gk(xk) ≥ Dh(x, xk),

since uk is in ∂f(xk).

5.4 Convergence of the PMA

From the discussion of the SUMMA we know that {f(xk)} is monotoni-
cally decreasing to f(x̂). As we noted previously, if the sequence {xk} is
bounded, and x̂ is unique, we can conclude that {xk} → x̂.

Suppose that x̂ is not known to be unique, but can be chosen in D; this
will be the case, of course, whenever D is closed. Then Gk(x̂) is finite for
each k. From the definition of Gk(x) we have

Gk(x̂) = f(x̂) +Dh(x̂, xk−1). (5.11)

From Equation (5.10) we have

Gk(x̂) = Gk(xk) + f(x̂)− f(xk)− 〈uk, x̂− xk〉+Dh(x̂, xk), (5.12)

so that

Gk(x̂) = f(xk) +Dh(xk, xk−1) + f(x̂)− f(xk)− 〈uk, x̂− xk〉+Dh(x̂, xk).(5.13)

Therefore,
Dh(x̂, xk−1)−Dh(x̂, xk) =

f(xk)− f(x̂) +Dh(xk, xk−1) + f(x̂)− f(xk)− 〈uk, x̂− xk〉. (5.14)

It follows that the sequence {Dh(x̂, xk)} is decreasing and that {f(xk)}
converges to f(x̂). If either the function f(x) or the function Dh(x̂, ·) has
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bounded level sets, then the sequence {xk} is bounded, has cluster points
x∗ in C, and f(x∗) = f(x̂), for every x∗. We now show that x̂ in D implies
that x∗ is also in D, whenever h is a Bregman -Legendre function (see
Chapter ??).

Let x∗ be an arbitrary cluster point, with {xkn} → x∗. If x̂ is not in
the interior of D, then, by Property B2 of Bregman-Legendre functions, we
know that

Dh(x∗, xkn)→ 0,

so x∗ is in D. Then the sequence {Dh(x∗, xk)} is decreasing. Since a
subsequence converges to zero, we have {Dh(x∗, xk)} → 0. From Property
R5, we conclude that {xk} → x∗.

If x̂ is in int D, but x∗ is not, then {Dh(x̂, xk)} → +∞, by Property R2.
But, this is a contradiction; therefore x∗ is in D. Once again, we conclude
that {xk} → x∗.

Now we summarize our results for the PMA. Let f : RJ → (−∞,+∞]
be closed, proper, convex and differentiable. Let h be a closed proper
convex function, with effective domain D, that is differentiable on the
nonempty open convex set int D. Assume that f(x) is finite on C = D
and attains its minimum value on C at x̂. For each positive integer k, let
xk minimize the function f(x) + Dh(x, xk−1). Assume that each xk is in
the interior of D.

Theorem 5.1 If the restriction of f(x) to x in C has bounded level sets
and x̂ is unique, and then the sequence {xk} converges to x̂.

Theorem 5.2 If h(x) is a Bregman-Legendre function and x̂ can be chosen
in D, then {xk} → x∗, x∗ in D, with f(x∗) = f(x̂).

5.5 The Newton-Raphson Algorithm

The Newton-Raphson algorithm for minimizing a function f : RJ → R has
the iterative step

xk = xk−1 −∇2f(xk−1)−1∇f(xk−1). (5.15)

Suppose now that f is twice differentiable and convex. It is interesting to
note that, having calculated xk−1, we can obtain xk by minimizing

Gk(x) = f(x) + (x− xk−1)T∇2f(xk−1)(x− xk−1)−Df (x, xk−1). (5.16)

5.6 Another Job for the PMA

As we have seen, the original goal of the PMA is to minimize a convex
function f(x) over the closure of the domain of h(x). Since the PMA is a
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SUMMA algorithm, we know that, whenever the sequence converges, the
limit x∗ satisfies f(x∗) = d, where d is the finite infimum of f(x) over x in
the interior of the domain of h. This suggests another job for the PMA.

Consider the problem of minimizing a differentiable convex function
h : RJ → R over all x for which Ax = b, where A is an M by N matrix
with rank M and b is arbitrary. With

f(x) =
1

2
‖Ax− b‖22, (5.17)

and x0 arbitrary we minimize

f(x) +Dh(x, xk−1) (5.18)

to get xk. Whenever the sequence {xk} converges to some x∗ we have
Ax∗ = b. If ∇h(x0) is in the range of AT , then so is ∇h(x∗) and x∗

minimizes h(x) over all x with Ax = b.

5.7 The Goldstein-Osher Algorithm

In [50] Goldstein and Osher present a modified version of the PMA for
the problem of minimizing h(x) over all x with Ax = b. Instead of mini-
mizing the function in Equation (5.18), they obtain the next iterate xk by
minimizing

1

2
‖Ax− bk−1‖22 + h(x), (5.19)

where b) is arbitrary and for k = 2, 3, ... they define

bk−1 = b+ bk−2 −Axk−1. (5.20)

Assuming that AAT is invertible, we have the following theorem, which is
not in [50].

Theorem 5.3 If the sequence {xk} converges to some x∗, and Ax∗ = b,
then the sequence {bk} converges to some b∗ and x∗ minimizes the function
h(x) over all x such that Ax = b.

Proof: From
0 = AT (Axk − bk−1) +∇h(xk)

we have
bk−1 = b+ (AAT )−1A∇h(xk),

and the right side converges to b+ (AAT )−1A∇h(x∗). Let z be such that
Az = b. For each k we have

1

2
‖Axk − bk−1‖22 + h(xk) ≤ 1

2
‖Az − bk−1‖22 + h(z).
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Taking the limit as k →∞, we get

1

2
‖b− b∗‖22 + h(x∗) ≤ 1

2
‖b− b∗‖22 + h(z),

from which the assertion of the theorem follows immediately.

In [50], the authors, hoping to rest their algorithm on the theoretical
foundation of the PMA, claim that their modification of the PMA is equiv-
alent to the PMA itself in this case; this is false, in general. For one thing,
the Bregman distance Dh does not determine a unique h; for y arbitrary
and g(x) = Dh(x, y) we have Dg = Dh. For another,we have the theo-
rem above for the Goldstein-Osher algorithm, while the x∗ given by the
PMA need not minimize h over all x with Ax = b. In order for the x∗

given by the PMA to minimize h(x) over Ax = b, we need ∇h(x0) in the
range of AT . The only way in which the PMA can distinguish between
h and g is through the selection of the initial x0. In fact, the authors of
[50] say nothing about the choice of x0 or of b0. What is true is this: if
b0 = b + (AAT )−1A∇h(x0) then the sequence {xk} is the same for both
algorithms, so that convergence results for the PMA can be assumed for
the Goldstein-Osher algorithm.

5.8 A Question about the PMA

We obtain xk by minimizing

f(x) +Dh(x, xk−1).

Let D = {x|h(x) < +∞}. Suppose that the sequence {xk} converges to x∗

in the closure of D. Since the algorithm is in the SUMMA class, we know
that

f(x∗) = min{f(x)|x ∈ D}.

Let M be the set of all z ∈ D with f(z) = f(x∗). The question is this:
does x∗ also minimize h(z) over all z ∈ M? The answer is probably no,
in general, since the Bregman distance Dh does not specify h uniquely.
Suppose that Dh = Dg. The only way that the iterative sequence can
distinguish between h and g is through the choice of x0, so x0 must play
some role in the answer.

Suppose that g(x) = Dg(x, x
0). Then Dh = Dg if and only if h has the

form
h(x) = Dg(x, p) + h(p),

for some p. For the case of

f(x) =
1

2
‖Ax− b‖22,
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we know that x∗ minimizes h(z) over all z with Az = b if and only if∇h(x∗)
is in the range of AT , or equivalently, ∇h(x0) is in the range of AT . In this
case, ∇g(x0) = 0, so clearly ∇g(x0) is in the range of AT . We also have

∇h(x0) = −∇g(p),

so x∗ will minimize h(z) over z ∈M if and only if ∇g(p) is on the range of
AT .

A conjecture is: for the general case, x∗ will minimize h(z) over z ∈M
provided that h(x) = Dh(x, x0). There are a number of examples, involving
both the Euclidean and KL distances, for which the conjecture is true.
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Chapter 6

An Interior-Point
Algorithm- The IPA

6.1 The IPA

The IPA is a modification of the PMA designed to overcome some of the
computational obstacles encountered in the PMA [26, 30]. At the kth step
of the IPA we minimize

Gk(x) = f(x) +Dh(x, xk−1) (6.1)

over either x ∈ RJ or x ∈ C, where h(x) is as in the previous section. We
have selected a(x) so that h(x) = a(x)− f(x) is convex and differentiable,
and the equation

∇a(xk) = ∇a(xk−1)−∇f(xk−1) (6.2)

is easily solved. As we saw previously, the projected gradient descent al-
gorithm is an example of the IPA. In this section we consider several other
examples and some potential generalizations.

6.2 The Landweber and Projected Landwe-
ber Algorithms

The Landweber (LW) and projected Landweber (PLW) algorithms are IPA
methods. The objective now is to minimize the function

f(x) =
1

2
‖Ax− b‖22, (6.3)
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over x ∈ RJ or x ∈ C, where A is a real I by J matrix. The gradient of
f(x) is

∇f(x) = AT (Ax− b) (6.4)

and is L-Lipschitz continuous for L = ρ(ATA), the largest eiqenvalue of
ATA. The Bregman distance associated with f(x) is

Df (x, z) = ‖Ax−Az‖22. (6.5)

We let

a(x) =
1

2γ
‖x‖22, (6.6)

where 0 < γ < 1
L , so that the function h(x) = a(x)− f(x) is convex.

At the kth step of the PLW we minimize

Gk(x) = f(x) +Dh(x, xk−1) (6.7)

over x ∈ C to get

xk = PC(xk−1 − γAT (Axk−1 − b)); (6.8)

in the case of C = RJ we get the Landweber algorithm.

6.3 The Simultaneous MART

The simultaneous MART (SMART) minimizes the Kullback-Leibler dis-
tance f(x) = KL(Px, y), where y is a positive vector, P is an I by J

matrix with non-negative entries Pij for which sj =
∑I
i=1 Pij = 1, for all

j, and we seek a non-negative solution of the system y = Px.
The Bregman distance associated with the function f(x) = KL(Px, y)

is

Df (x, z) = KL(Px, Pz). (6.9)

We select a(x) to be

a(x) =

J∑
j=1

xj log(xj)− xj . (6.10)

It follows from the inequality in (1.14) that h(x) is convex and

Dh(x, z) = KL(x, z)−KL(Px, Pz) ≥ 0. (6.11)
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At the kth step of the SMART we minimize

Gk(x) = f(x) +Dh(x, xk−1) =

KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (6.12)

to get

xkj = xk−1j exp
( I∑
i=1

Pij log
yi

(Pxk−1)i

)
. (6.13)
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Chapter 7

The Forward-Backward
Splitting Algorithm

7.1 The FBS Algorithm

The forward-backward splitting methods (FBS) [41, 33] form a broad class
of SUMMA algorithms closely related the IPA. Note that minimizing Gk(x)
in Equation (6.1) over x ∈ C is equivalent to minimizing

Gk(x) = ιC(x) + f(x) +Dh(x, xk−1) (7.1)

over all x ∈ RJ , where ιC(x) = 0 for x ∈ C and ιC(x) = +∞ otherwise.
This suggests a more general iterative algorithm, the FBS.

7.2 FBS as SUMMA

Suppose that we want to minimize the function f1(x) + f2(x), where both
functions are convex and f2(x) is differentiable with an L-Lipschitz con-
tinuous gradient. At the kth step of the FBS algorithm we obtain xk by
minimizing

Gk(x) = f1(x) + f2(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1), (7.2)

over all x ∈ RJ , where 0 < γ < 1
2γ . As we shall see,

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22 ≥ gk+1(x), (7.3)

which shows that the FBS algorithm is in the SUMMA class.
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7.3 Moreau’s Proximity Operators

Let f : RJ → R be convex. For each z ∈ RJ the function

mf (z) := min
x
{f(x) +

1

2
‖x− z‖22} (7.4)

is minimized by a unique x [69]. The operator that associates with each
z the minimizing x is Moreau’s proximity operator, and we write x =
proxf (z). The operator proxf extends the notion of orthogonal projection
onto a closed convex set [62, 63, 64]. We have x = proxf (z) if and only if z−
x ∈ ∂f(x). Proximity operators are also firmly non-expansive [41]; indeed,
the proximity operator proxf is the resolvent of the maximal monotone
operator B(x) = ∂f(x) and all such resolvent operators are firmly non-
expansive [10].

7.4 Convergence of the FBS Algorithm

Our objective here is to provide an elementary proof of convergence for the
forward-backward splitting (FBS) algorithm; a detailed discussion of this
algorithm and its history is given by Combettes and Wajs in [41].

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differ-
entiable, and ∇f2 L-Lipschitz continuous. The iterative step of the FBS
algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
. (7.5)

As we shall show, convergence of the sequence {xk} to a solution can be
established, if γ is chosen to lie within the interval (0, 1/L].

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differen-
tiable, and ∇f2 L-Lipschitz continuous. Let {xk} be defined by Equation
(7.5) and let 0 < γ ≤ 1/L.

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1), (7.6)

where

Df2(x, xk−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x− xk−1〉. (7.7)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman
distance formed from the function f2 [9].

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1) (7.8)
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can be rewritten as

gk(x) = Dh(x, xk−1), (7.9)

where

h(x) =
1

2γ
‖x‖22 − f2(x). (7.10)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (7.11)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (7.12)

Since ∇f2 is L-Lipschitz, the inequality (7.12) holds for 0 < γ ≤ 1/L.

Lemma 7.1 The xk that minimizes Gk(x) over x is given by Equation
(7.5).

Proof: We know that xk minimizes Gk(x) if and only if

0 ∈ ∇f2(xk) +
1

γ
(xk − xk−1)−∇f2(xk) +∇f2(xk−1) + ∂f1(xk),

or, equivalently,(
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂(γf1)(xk).

Consequently,
xk = proxγf1(xk−1 − γ∇f2(xk−1)).

Theorem 7.1 The sequence {xk} converges to a minimizer of the function
f(x), whenever minimizers exist.

Proof: A relatively simple calculation shows that

Gk(x)−Gk(xk) =
1

2γ
‖x− xk‖22 +

f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉. (7.13)
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Since

(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(xk),

it follows that

f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉 ≥ 0.

Therefore,

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22 ≥ gk+1(x). (7.14)

Consequently, the inequality in (1.18) holds and the iteration fits into the
SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(xk) ≥ 0.

Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we may select
a subsequence {xkn} converging to some x∗∗, with {xkn−1} converging to
some x∗, and therefore f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gk(x∗∗) − Gk(xk)} is
decreasing to zero. From the inequality in (7.14), we conclude that the
sequence {‖x∗ − xk‖22} converges to zero, and so {xk} converges to x∗.
This completes the proof of the theorem.

7.5 Some Examples

We present some examples to illustrate the application of the convergence
theorem.
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7.5.1 Projected Gradient Descent

Let C be a non-empty, closed convex subset of RJ and f1(x) = ιC(x),
the function that is +∞ for x not in C and zero for x in C. Then ιC(x)
is convex, but not differentiable. We have proxγf1 = PC , the orthogonal
projection onto C. The iteration in Equation (7.5) becomes

xk = PC

(
xk−1 − γ∇f2(xk−1)

)
. (7.15)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever
such minimizers exist, for 0 < γ ≤ 1/L.

7.5.2 The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex
sets. The split feasibility problem (SFP) is to find x in C such that Ax is
in Q. The function

f2(x) =
1

2
‖PQAx−Ax‖22 (7.16)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spec-
tral radius of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (7.17)

We want to minimize the function f2(x) over x in C, or, equivalently, to
minimize the function f(x) = ιC(x)+f2(x). The projected gradient descent
algorithm has the iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
; (7.18)

this iterative method was called the CQ-algorithm in [27, 28]. The sequence
{xk} converges to a solution whenever f2 has a minimum on the set C, for
0 < γ ≤ 1/L.

In [38, 37] the CQ algorithm was extended to a multiple-sets algorithm
and applied to the design of protocols for intensity-modulated radiation
therapy.

7.5.3 The Projected Landweber Algorithm

The problem is to minimize the function

f2(x) =
1

2
‖Ax− b‖22,

over x ∈ C. This is a special case of the SFP and we can use the CQ-
algorithm, with Q = {b}. The resulting iteration is the projected Landwe-
ber algorithm [8]; when C = RJ it becomes the Landweber algorithm [55].
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7.5.4 Minimizing f2 over a Linear Manifold

Suppose that we want to minimize f2 over x in the linear manifold M =
S + p, where S is a subspace of RJ of dimension I < J and p is a fixed
vector. Let A be an I by J matrix such that the I columns of AT form a
basis for S. For each z ∈ RI let

d(z) = f2(AT z + p),

so that d is convex, differentiable, and its gradient,

∇d(z) = A∇f2(AT z + p),

is K-Lipschitz continuous, for K = ρ(ATA)L. The sequence {zk} defined
by

zk = zk−1 − γ∇d(zk−1) (7.19)

converges to a minimizer of d over all z in RI , whenever minimizers exist,
for 0 < γ ≤ 1/K.

From Equation (7.19) we get

xk = xk−1 − γATA∇f2(xk−1), (7.20)

with xk = AT zk + p. The sequence {xk} converges to a minimizer of f2
over all x in M .

Suppose now that we begin with an algorithm having the iterative step

xk = xk−1 − γATA∇f2(xk−1), (7.21)

where A is any real I by J matrix having rank I. Let x0 be in the range of
AT , so that x0 = AT z0, for some z0 ∈ RI . Then each xk = AT zk is again
in the range of AT , and we have

AT zk = AT zk−1 − γATA∇f2(AT zk−1). (7.22)

With d(z) = f2(AT z), we can write Equation (7.22) as

AT
(
zk − (zk−1 − γ∇d(zk−1))

)
= 0. (7.23)

Since A has rank I, AT is one-to-one, so that

zk − zk−1 − γ∇d(zk−1) = 0. (7.24)

The sequence {zk} converges to a minimizer of d, over all z ∈ RI , whenever
such minimizers exist, for 0 < γ ≤ 1/K. Therefore, the sequence {xk}
converges to a minimizer of f2 over all x in the range of AT .
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7.6 Feasible-Point Algorithms

Suppose that we want to minimize a convex differentiable function f(x)
over x such that Ax = b, where A is an I by J full-rank matrix, with
I < J . If Axk = b for each of the vectors {xk} generated by the iterative
algorithm, we say that the algorithm is a feasible-point method.

7.6.1 The Projected Gradient Algorithm

Let C be the feasible set of all x in RJ such that Ax = b. For every z in
RJ , we have

PCz = PNS(A)z +AT (AAT )−1b, (7.25)

where NS(A) is the null space of A. Using

PNS(A)z = z −AT (AAT )−1Az, (7.26)

we have

PCz = z +AT (AAT )−1(b−Az). (7.27)

Using Equation (7.5), we get the iteration step for the projected gradient
algorithm:

xk = xk−1 − γPNS(A)∇f(xk−1), (7.28)

which converges to a solution for 0 < γ ≤ 1/L, whenever solutions exist.
Next we present a somewhat simpler approach.

7.6.2 The Reduced Gradient Algorithm

Let x0 be a feasible point, that is, Ax0 = b. Then x = x0 +p is also feasible
if p is in the null space of A, that is, Ap = 0. Let Z be a J by J − I matrix
whose columns form a basis for the null space of A. We want p = Zv for
some v. The best v will be the one for which the function

φ(v) = f(x0 + Zv)

is minimized. We can apply to the function φ(v) the steepest descent
method, or the Newton-Raphson method, or any other minimization tech-
nique.

The steepest descent method, applied to φ(v), is called the reduced
steepest descent algorithm [65]. The gradient of φ(v), also called the re-
duced gradient, is

∇φ(v) = ZT∇f(x),
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where x = x0 + Zv; the gradient operator ∇φ is then K-Lipschitz, for
K = ρ(ATA)L.

Let x0 be feasible. The iteration in Equation (7.5) now becomes

vk = vk−1 − γ∇φ(vk−1), (7.29)

so that the iteration for xk = x0 + Zvk is

xk = xk−1 − γZZT∇f(xk−1). (7.30)

The vectors xk are feasible and the sequence {xk} converges to a solution,
whenever solutions exist, for any 0 < γ < 1

K .

7.6.3 The Reduced Newton-Raphson Method

The same idea can be applied to the Newton-Raphson method. The
Newton-Raphson method, applied to φ(v), is called the reduced Newton-
Raphson method [65]. The Hessian matrix of φ(v), also called the reduced
Hessian matrix, is

∇2φ(v) = ZT∇2f(c)Z,

so that the reduced Newton-Raphson iteration becomes

xk = xk−1 − Z
(
ZT∇2f(xk−1)Z

)−1
ZT∇f(xk−1). (7.31)

Let c0 be feasible. Then each xk is feasible. The sequence {xk} is not
guaranteed to converge.



Chapter 8

The SMART and EMML
Algorithms

In this chapter we discuss the simultaneous multiplicative algebraic recon-
struction technique (SMART) and the expectation maximization maximum
likelihood (EMML) algorithms.

8.1 The SMART Iteration

The SMART [44, 70, 39, 20, 21, 22] minimizes the function f(x) = KL(Px, y),
over nonnegative vectors x. Here y is a vector with positive entries, and P
is a matrix with nonnegative entries, such that sj =

∑I
i=1 Pij > 0. Denote

by X the set of all nonnegative x for which the vector Px has only positive
entries.

Having found the vector xk−1, the next vector in the SMART sequence
is xk, with entries given by

xkj = xk−1j exp s−1j

( I∑
i=1

Pij log(yi/(Px
k−1)i)

)
. (8.1)

8.2 The EMML Iteration

The EMML algorithm [43, 71, 56, 74, 57, 20, 21, 22] minimizes the function
f(x) = KL(y, Px), over nonnegative vectors x. Having found the vector
xk−1, the next vector in the EMML sequence is xk, with entries given by

xkj = xk−1j s−1j

( I∑
i=1

Pij(yi/(Px
k−1)i)

)
. (8.2)
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8.3 The EMML and the SMART as AM Meth-
ods

In [20] the SMART was derived using the following alternating minimiza-
tion approach.

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (8.3)

and

q(x)ij = xjPij . (8.4)

In the iterative step of the SMART we get xk by minimizing the function

KL(q(x), r(xk−1)) =

I∑
i=1

J∑
j=1

KL(q(x)ij , r(x
k−1)ij)

over x ≥ 0. Note that KL(Px, y) = KL(q(x), r(x)).
Similarly, the iterative step of the EMML is to minimize the function

KL(r(xk−1), q(x)) to get x = xk. Note that KL(y, Px) = KL(r(x), q(x)).
It follows from the identities established in [20] that the SMART can also
be formulated as a particular case of the SUMMA.

8.4 The SMART as a Case of SUMMA

We show now that the SMART is a particular case of the SUMMA. Lemma
1.14 is helpful here. For notational convenience, we assume, for the remain-
der of this section, that sj = 1 for all j. From the identities established
for the SMART in [20], we know that the iterative step of SMART can be
expressed as follows: minimize the function

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (8.5)

to get xk. According to Lemma 1.14, the quantity

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1)

is nonnegative, since sj = 1. The gk(x) are defined for all nonnegative x;
that is, the set D is the closed nonnegative orthant in RJ . Each xk is a
positive vector.

It was shown in [20] that

Gk(x) = Gk(xk) +KL(x, xk), (8.6)
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from which it follows immediately that the SMART is in the SUMMA class.
Because the SMART is a particular case of the SUMMA, we know that

the sequence {f(xk)} is monotonically decreasing to f(x̂). It was shown
in [20] that if y = Px has no nonnegative solution and the matrix P and
every submatrix obtained from P by removing columns has full rank, then
x̂ is unique; in that case, the sequence {xk} converges to x̂. As we shall
see, the SMART sequence always converges to a nonnegative minimizer of
f(x). To establish this, we reformulate the SMART as a particular case of
the PMA.

8.5 The SMART as a Case of the PMA

We take F (x) to be the function

F (x) =

J∑
j=1

xj log xj . (8.7)

Then

DF (x, z) = KL(x, z). (8.8)

For nonnegative x and z in X , we have

Df (x, z) = KL(Px, Pz). (8.9)

Lemma 8.1 DF (x, z) ≥ Df (x, z).

Proof: We have

DF (x, z) ≥
J∑
j=1

KL(xj , zj) ≥
J∑
j=1

I∑
i=1

KL(Pijxj , Pijzj)

≥
I∑
i=1

KL((Px)i, (Pz)i) = KL(Px, Pz). (8.10)

We let h(x) = F (x)− f(x); then Dh(x, z) ≥ 0 for nonnegative x and z
in X . The iterative step of the SMART is to minimize the function

f(x) +Dh(x, xk−1). (8.11)

So the SMART is a particular case of the PMA.
The function h(x) = F (x)−f(x) is finite on D the nonnegative orthant

of RJ , and differentiable on the interior, so C = D is closed in this example.
Consequently, x̂ is necessarily in D. From our earlier discussion of the



70 CHAPTER 8. THE SMART AND EMML ALGORITHMS

PMA, we can conclude that the sequence {Dh(x̂, xk)} is decreasing and
the sequence {Df (x̂, xk)} → 0. Since the function KL(x̂, ·) has bounded
level sets, the sequence {xk} is bounded, and f(x∗) = f(x̂), for every
cluster point. Therefore, the sequence {Dh(x∗, xk)} is decreasing. Since a
subsequence converges to zero, the entire sequence converges to zero. The
convergence of {xk} to x∗ follows from basic properties of the KL distance.

From the fact that {Df (x̂, xk)} → 0, we conclude that Px̂ = Px∗.
Equation (5.14) now tells us that the difference Dh(x̂, xk−1) − Dh(x̂, xk)
depends on only on Px̂, and not directly on x̂. Therefore, the difference
Dh(x̂, x0) − Dh(x̂, x∗) also depends only on Px̂ and not directly on x̂.
Minimizing Dh(x̂, x0) over nonnegative minimizers x̂ of f(x) is therefore
equivalent to minimizing Dh(x̂, x∗) over the same vectors. But the solution
to the latter problem is obviously x̂ = x∗. Thus we have shown that the
limit of the SMART is the nonnegative minimizer of KL(Px, y) for which
the distance KL(x, x0) is minimized.

The following theorem summarizes the situation with regard to the
SMART.

Theorem 8.1 In the consistent case the SMART converges to the unique
nonnegative solution of y = Px for which the distance

∑J
j=1 sjKL(xj , x

0
j )

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Px, y) for which

∑J
j=1 sjKL(xj , x

0
j ) is

minimized; if P and every matrix derived from P by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Px, y) and
at most I − 1 of its entries are nonzero.

8.6 SMART and EMML as Projection Meth-
ods

For each i = 1, 2, ..., I, let Hi be the hyperplane

Hi = {z|(Pz)i = yi}. (8.12)

The KL projection of a given positive x onto Hi is the z in Hi that min-
imizes the KL distance KL(z, x). Generally, the KL projection onto Hi

cannot be expressed in closed form. However, the z in Hi that minimizes
the weighted KL distance

J∑
j=1

PijKL(zj , xj) (8.13)

is Ti(x) given by

Ti(x)j = xjyi/(Px)i. (8.14)
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Both the SMART and the EMML can be described in terms of the Ti.
The iterative step of the SMART algorithm can be expressed as

xkj =

I∏
i=1

(Ti(x
k−1)j)

Pij . (8.15)

We see that xkj is a weighted geometric mean of the terms Ti(x
k−1)j .

The iterative step of the EMML algorithm can be expressed as

xkj =

I∑
i=1

PijTi(x
k−1)j . (8.16)

We see that xkj is a weighted arithmetic mean of the terms Ti(x
k−1)j , using

the same weights as in the case of SMART.

8.7 The MART and EMART Algorithms

The MART algorithm has the iterative step

xkj = xk−1j (yi/(Px
k−1)i)

Pijm
−1
i , (8.17)

where i = (k − 1)(mod I) + 1 and

mi = max{Pij |j = 1, 2, ..., J}. (8.18)

When there are non-negative solutions of the system y = Px, the sequence
{xk} converges to the solution x that minimizes KL(x, x0) [23, 24, 25]. We
can express the MART in terms of the weighted KL projections Ti(x

k−1);

xkj = (xk−1j )1−Pijm
−1
i (Ti(x

k−1)j)
Pijm

−1
i . (8.19)

We see then that the iterative step of the MART is a relaxed weighted
KL projection onto Hi, and a weighted geometric mean of the current xkj
and Ti(x

k−1)j . The expression for the MART in Equation (8.19) suggests
a somewhat simpler iterative algorithm involving a weighted arithmetic
mean of the current xk−1j and Ti(x

k−1)j ; this is the EMART algorithm.
The iterative step of the EMART algorithm is

xkj = (1− Pijm−1i )xk−1j + Pijm
−1
i Ti(x

k−1)j . (8.20)

Whenever the system y = Px has non-negative solutions, the EMART
sequence {xk} converges to a non-negative solution, but nothing further is
known about this solution. One advantage that the EMART has over the
MART is the substitution of multiplication for exponentiation.

Block-iterative versions of SMART and EMML have also been investi-
gated; see [23, 24, 25] and the references therein.
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8.8 Possible Extensions of MART and EMART

As we have seen, the iterative steps of the MART and the EMART are re-
laxed weighted KL projections onto the hyperplane Hi, resulting in vectors
that are not within Hi. This suggests variants of MART and EMART in
which, at the end of each iterative step, a further weighted KL projection
onto Hi is performed. In other words, for MART and EMART the new
vector would be Ti(x

k), instead of xk as given by Equations (8.17) and
(8.20), respectively. Research into the properties of these new algorithms
is ongoing.



Chapter 9

Regularization Methods

9.1 The Issue of Sensitivity to Noise

Many of the algorithms we have discussed here are used to solve for exact or
approximate solutions of large systems of linear equations, with or without
additional constraints. It is often the case, particularly in remote-sensing
applications, that the vector b in the system Ax = b is obtained through
measurements and its entries are noisy. It is also frequently the case that
the matrix A describing the relationship between the measurements and
the desired x is a simplification of the actual physical situation. The result
is that an exact solution of Ax = b may not be desirable, even when exact
solutions exist. When additional constraints, such as the positivity of x, are
imposed, otherwise consistent systems Ax = b may become inconsistent,
requiring an approximate solution. Regularization is a general method
for reducing the sensitivity of the answer to noise and model error in the
system.

9.2 Non-Negatively Constrained Least-Squares

If there is no solution to a system of linear equations Ax = b, then we may
seek a least-squares “solution” , which is a minimizer of the function

f(x) =
1

2

I∑
i=1

(
(

J∑
m=1

Aimxm)− bi
)2

=
1

2
||Ax− b||2. (9.1)

The partial derivative of f(x) with respect to the variable xj is

∂f

∂xj
(x) =

I∑
i=1

Aij

(
(

J∑
m=1

Aimxm)− bi
)
. (9.2)
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Setting the gradient equal to zero, we find that to get a least-squares solu-
tion we must solve the system of equations

AT (Ax− b) = 0. (9.3)

Now we consider what happens when the additional constraints xj ≥ 0 are
imposed.

This problem becomes a convex programming problem. Let x̂ be a non-
negatively constrained least-squares solution. According to the Karush-
Kuhn-Tucker Theorem, for those values of j for which x̂j is not zero the

corresponding Lagrange multiplier is λ∗j = 0 and ∂f
∂xj

(x̂) = 0. Therefore, if

x̂j 6= 0,

0 =

I∑
i=1

Aij

(
(

J∑
m=1

Aimx̂m)− bi
)
. (9.4)

Let Q be the I by K matrix obtained from A by deleting rows j for which
x̂j = 0. Then we can write

QT (Ax̂− b) = 0. (9.5)

If Q has K ≥ I columns and has full rank, then QT is a one-to-one linear
transformation, which implies that Ax̂ = b. Therefore, when there is no
non-negative solution of Ax = b, and Q has full rank, which is the typical
case, the Q must have fewer than I columns, which means that x̂ has fewer
than I non-zero entries.

This result has some practical implications in medical image reconstruc-
tion. In the hope of improving the resolution of the reconstructed image,
we may be tempted to take J , the number of pixels, larger than I, the
number of equations arising from photon counts or line integrals. Since
the vector b consists of measured data, it is noisy and there may well not
be a non-negative solution of Ax = b. As a result, the image obtained by
non-negatively constrained least-squares will have at most I − 1 non-zero
entries; many of the pixels will be zero and they will be scattered through-
out the image, making it unusable for diagnosis. The reconstructed images
resemble stars in a night sky, and, as a result, the theorem is sometimes
described as the “night sky” theorem.

This “night sky” phenomenon is not restricted to least squares. The
same thing happens with methods based on the Kullback-Leibler distance,
such as MART, EMML and SMART.

9.3 The EMML Algorithm

As we saw previously, the sequence {xk} generated by the EMML iterative
step in Equation (8.2) converges to a non-negative minimizer x̂ of f(x) =
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KL(y, Px), and we have

x̂j = x̂js
−1
j

I∑
i=1

Pij
yi

(Px̂)i
, (9.6)

for all j. We consider what happens when there is no non-negative solution
of the system y = Px.

For those values of j for which x̂j > 0, we have

sj =

I∑
i=1

Pij =

I∑
i=1

Pij
yi

(Px̂)i
. (9.7)

Now let Q be the I by K matrix obtained from P by deleting rows j for
which x̂j = 0. If Q has full rank and K ≥ I, then QT is one-to-one, so
that 1 = yi

(Px̂)i
for all i, or y = Px̂. But we are assuming that there is no

non-negative solution of y = Px. Consequently, we must have K < I and
I −K of the entries of x̂ are zero.

9.4 Norm-Constrained Least-Squares

One way to regularize the least-squares problem is to minimize not ‖b −
Ax‖2, but, say,

f(x) = ‖b−Ax‖22 + ε2‖x‖22, (9.8)

for some small ε > 0. Now we are still trying to make ‖b−Ax‖2 small, but
managing to keep ‖x‖2 from becoming too large in the process. This leads
to a norm-constrained least-squares solution.

The minimizer of f(x) is the unique solution x̂ε of the system

(ATA+ ε2I)x = AT b. (9.9)

When I and J are large, we need ways to solve this system without having
to deal with the matrix ATA + ε2I. The Landweber method allows us
to avoid ATA in calculating the least-squares solution. Is there a similar
method to use now? Yes, there is.

9.5 Regularizing Landweber’s Algorithm

Our goal is to minimize the function f(x) in Equation (9.8). Notice that
this is equivalent to minimizing the function

F (x) = ||Bx− c||22, (9.10)
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for

B =

[
A
εI

]
, (9.11)

and

c =

[
b
0

]
, (9.12)

where 0 denotes a column vector with all entries equal to zero. The Landwe-
ber iteration for the problem Bx = c is

xk+1 = xk + αBT (c−Bxk), (9.13)

for 0 < α < 2/ρ(BTB), where ρ(BTB) is the largest eigenvalue, or the
spectral radius, of BTB. Equation (9.13) can be written as

xk+1 = (1− αε2)xk + αAT (b−Axk). (9.14)

9.6 Regularizing the ART

We would like to get the regularized solution x̂ε by taking advantage of
the faster convergence of the ART. Fortunately, there are ways to find x̂ε,
using only the matrix A and the ART algorithm. We discuss two methods
for using ART to obtain regularized solutions of Ax = b. The first one is
presented in [29], while the second one is due to Eggermont, Herman, and
Lent [45].

In our first method we use ART to solve the system of equations given
in matrix form by

[AT εI ]

[
u
v

]
= 0. (9.15)

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −εx̂ε, while the upper limit is u∞ = b−Ax̂ε.

The method of Eggermont et al. is similar. In their method we use
ART to solve the system of equations given in matrix form by

[A εI ]

[
x
v

]
= b. (9.16)

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂ε, and εv∞ = b−Ax̂ε.
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9.7 Regularizing SMART and EMML

We can regularize the SMART by minimizing

f(x) = (1− α)KL(Px, y) + αKL(x, p), (9.17)

where p is a positive prior estimate of the desired answer, and α is in the
interval (0, 1). The iterative step of the regularized SMART is

xkj =
(
xk−1j exp

(
s−1j

I∑
i=1

Pij log(yi/(Px
k−1)i)

))1−α
pαj . (9.18)

Similarly, we regularize the EMML algorithm by minimizing

f(x) = (1− α)KL(y, Px) + αKL(p, x). (9.19)

The iterative step of the regularized EMML is

xkj = (1− α)xk−1j s−1j

( I∑
i=1

Pij(yi/(Px
k−1)i)

)
+ αpj . (9.20)
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Chapter 10

Alternating Minimization

As we have seen, the SMART is best derived as an alternating minimization
(AM) algorithm. The main reference for alternating minimization is the
paper [42] of Csiszár and Tusnády. As the authors of [74] remark, the
geometric argument in [42] is “deep, though hard to follow”. As we shall
see, all AM methods for which the five-point property of [42] holds fall into
the SUMMA class (see [32]).

10.1 Alternating Minimization

The alternating minimization approach provides a useful framework for the
derivation of iterative optimization algorithms. As we shall see, conver-
gence of an AM algorithm can be established, provided that the five-point
property of [42] holds. In this section we discuss this five-point property
and use it to obtain a somewhat simpler proof of convergence of AM algo-
rithms. We then show that all AM algorithms with the five-point property
are in the SUMMA class.

10.1.1 The AM Framework

Suppose that P and Q are arbitrary non-empty sets and the function
Θ(p, q) satisfies −∞ < Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q. We
assume that, for each p ∈ P , there is q ∈ Q with Θ(p, q) < +∞. There-
fore, b = infp∈P, q∈Q Θ(p, q) < +∞. We assume also that b > −∞; in
many applications, the function Θ(p, q) is non-negative, so this additional
assumption is unnecessary. We do not always assume there are p̂ ∈ P and
q̂ ∈ Q such that Θ(p̂, q̂) = b; when we do assume that such a p̂ and q̂
exist, we will not assume that p̂ and q̂ are unique with that property. The
objective is to generate a sequence {(pn, qn)} such that Θ(pn, qn)→ b.
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10.1.2 The AM Iteration

The general AM method proceeds in two steps: we begin with some q0,
and, having found qn, we

• 1. minimize Θ(p, qn) over p ∈ P to get p = pn+1, and then

• 2. minimize Θ(pn+1, q) over q ∈ Q to get q = qn+1.

In certain applications we consider the special case of alternating cross-
entropy minimization. In that case, the vectors p and q are non-negative,
and the function Θ(p, q) will have the value +∞ whenever there is an
index j such that pj > 0, but qj = 0. It is important for those particular
applications that we select q0 with all positive entries. We therefore assume,
for the general case, that we have selected q0 so that Θ(p, q0) is finite for
all p.

The sequence {Θ(pn, qn)} is decreasing and bounded below by b, since
we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1). (10.1)

Therefore, the sequence {Θ(pn, qn)} converges to some B ≥ b. Without
additional assumptions, we can say little more.

We know two things:

Θ(pn+1, qn)−Θ(pn+1, qn+1) ≥ 0, (10.2)

and

Θ(pn, qn)−Θ(pn+1, qn) ≥ 0. (10.3)

Equation 10.3 can be strengthened to

Θ(p, qn)−Θ(pn+1, qn) ≥ 0. (10.4)

We need to make these inequalities more precise.

10.1.3 The Five-Point Property for AM

The five-point property is the following: for all p ∈ P and q ∈ Q and
n = 1, 2, ...

The Five-Point Property

Θ(p, q) + Θ(p, qn−1) ≥ Θ(p, qn) + Θ(pn, qn−1). (10.5)
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10.1.4 The Main Theorem for AM

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to con-
verge to b, that is, for B = b. The following is the main result of [42].

Theorem 10.1 If the five-point property holds then B = b.

Proof: Suppose that B > b. Then there are p′ and q′ such that B >
Θ(p′, q′) ≥ b. From the five-point property we have

Θ(p′, qn−1)−Θ(pn, qn−1) ≥ Θ(p′, qn)−Θ(p′, q′), (10.6)

so that

Θ(p′, qn−1)−Θ(p′, qn) ≥ Θ(pn, qn−1)−Θ(p′, q′) ≥ 0. (10.7)

All the terms being subtracted can be shown to be finite. It follows that
the sequence {Θ(p′, qn−1)} is decreasing, bounded below, and therefore
convergent. The right side of Equation (10.7) must therefore converge to
zero, which is a contradiction. We conclude that B = b whenever the
five-point property holds in AM.

10.1.5 The Three- and Four-Point Properties

In [42] the five-point property is related to two other properties, the three-
and four-point properties. This is a bit peculiar for two reasons: first, as
we have just seen, the five-point property is sufficient to prove the main
theorem; and second, these other properties involve a second function, ∆ :
P ×P → [0,+∞], with ∆(p, p) = 0 for all p ∈ P . The three- and four-point
properties jointly imply the five-point property, but to get the converse, we
need to use the five-point property to define this second function; it can be
done, however.

The three-point property is the following:

The Three-Point Property

Θ(p, qn)−Θ(pn+1, qn) ≥ ∆(p, pn+1), (10.8)

for all p. The four-point property is the following:

The Four-Point Property

∆(p, pn+1) + Θ(p, q) ≥ Θ(p, qn+1), (10.9)

for all p and q.
It is clear that the three- and four-point properties together imply the

five-point property. We show now that the three-point property and the
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four-point property are implied by the five-point property. For that purpose
we need to define a suitable ∆(p, p̃). For any p and p̃ in P define

∆(p, p̃) = Θ(p, q(p̃))−Θ(p, q(p)), (10.10)

where q(p) denotes a member of Q satisfying Θ(p, q(p)) ≤ Θ(p, q), for all q
in Q. Clearly, ∆(p, p̃) ≥ 0 and ∆(p, p) = 0. The four-point property holds
automatically from this definition, while the three-point property follows
from the five-point property. Therefore, it is sufficient to discuss only the
five-point property when speaking of the AM method.

10.2 Alternating Bregman Distance Minimiza-
tion

The general problem of minimizing Θ(p, q) is simply a minimization of a
real-valued function of two variables, p ∈ P and q ∈ Q. In many cases the
function Θ(p, q) is a distance between p and q, either ‖p− q‖22 or KL(p, q).
In the case of Θ(p, q) = ‖p− q‖22, each step of the alternating minimization
algorithm involves an orthogonal projection onto a closed convex set; both
projections are with respect to the same Euclidean distance function. In
the case of cross-entropy minimization, we first project qn onto the set
P by minimizing the distance KL(p, qn) over all p ∈ P , and then project
pn+1 onto the set Q by minimizing the distance function KL(pn+1, q). This
suggests the possibility of using alternating minimization with respect to
more general distance functions. We shall focus on Bregman distances.

10.2.1 Bregman Distances

Let f : RJ → R be a Bregman function [9, 40, 12], and so f(x) is convex on
its domain and differentiable in the interior of its domain. Then, for x in
the domain and z in the interior, we define the Bregman distance Df (x, z)
by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (10.11)

For example, the KL distance is a Bregman distance with associated Breg-
man function

f(x) =

J∑
j=1

xj log xj − xj . (10.12)

Suppose now that f(x) is a Bregman function and P and Q are closed
convex subsets of the interior of the domain of f(x). Let pn+1 minimize
Df (p, qn) over all p ∈ P . It follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0, (10.13)
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for all p ∈ P . Since

Df (p, qn)−Df (pn+1, qn) =

Df (p, pn+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉, (10.14)

it follows that the three-point property holds, with

Θ(p, q) = Df (p, q), (10.15)

and

∆(p, p̂) = Df (p, p̃). (10.16)

To get the four-point property we need to restrict Df somewhat; we assume
from now on that Df (p, q) is jointly convex, that is, it is convex in the
combined vector variable (p, q) (see [4]). Now we can invoke a lemma due
to Eggermont and LaRiccia [46].

10.2.2 The Eggermont-LaRiccia Lemma

Lemma 10.1 Suppose that the Bregman distance Df (p, q) is jointly con-
vex. Then it has the four-point property.

Proof: By joint convexity we have

Df (p, q)−Df (pn, qn) ≥

〈∇1Df (pn, qn), p− pn〉+ 〈∇2Df (pn, qn), q − qn〉,
where ∇1 denotes the gradient with respect to the first vector variable.
Since qn minimizes Df (pn, q) over all q ∈ Q, we have

〈∇2Df (pn, qn), q − qn〉 ≥ 0,

for all q. Also,

〈∇1(pn, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉.

It follows that

Df (p, qn)−Df (p, pn) = Df (pn, qn) + 〈∇1(pn, qn), p− pn〉

≤ Df (p, q)− 〈∇2Df (pn, qn), q − qn〉 ≤ Df (p, q).

Therefore, we have

Df (p, pn) +Df (p, q) ≥ Df (p, qn).

This is the four-point property.

We now know that the alternating minimization method works for any
Bregman distance that is jointly convex. This includes the Euclidean and
the KL distances [4].
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10.3 Minimizing a Proximity Function

We present now an example of alternating Bregman distance minimization
taken from [34]. The problem is the convex feasibility problem (CFP), to
find a member of the intersection C ⊆ RJ of finitely many closed convex
sets Ci, i = 1, ..., I, or, failing that, to minimize the proximity function

F (x) =

I∑
i=1

Di(
←−
P ix, x), (10.17)

where fi are Bregman functions for which Di, the associated Bregman
distance, is jointly convex, and

←−
P ix are the left Bregman projection of

x onto the set Ci, that is,
←−
P ix ∈ Ci and Di(

←−
P ix, x) ≤ Di(z, x), for all

z ∈ Ci. Because each Di is jointly convex, the function F (x) is convex.
The problem can be formulated as an alternating minimization, where

P ⊆ RIJ is the product set P = C1 × C2 × ... × CI . A typical member
of P has the form p = (c1, c2, ..., cI), where ci ∈ Ci, and Q ⊆ RIJ is the
diagonal subset, meaning that the elements of Q are the I-fold product of
a single x; that is Q = {d(x) = (x, x, ..., x) ∈ RIJ}. We then take

Θ(p, q) =

I∑
i=1

Di(c
i, x), (10.18)

and ∆(p, p̃) = Θ(p, p̃).
In [36] a similar iterative algorithm was developed for solving the CFP,

using the same sets P and Q, but using alternating projection, rather
than alternating minimization. Now it is not necessary that the Bregman
distances be jointly convex. Each iteration of their algorithm involves two
steps:

• 1. minimize
∑I
i=1Di(c

i, xn) over ci ∈ Ci, obtaining ci =
←−
P ix

n, and
then

• 2. minimize
∑I
i=1Di(x,

←−
P ix

n).

Because this method is an alternating projection approach, it converges
only when the CFP has a solution, whereas the previous alternating mini-
mization method minimizes F (x), even when the CFP has no solution.

10.4 Right and Left Projections

Because Bregman distances Df are not generally symmetric, we can speak
of right and left Bregman projections onto a closed convex set. For any
allowable vector x, the left Bregman projection of x onto C, if it exists, is
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the vector
←−
P Cx ∈ C satisfying the inequality Df (

←−
P Cx, x) ≤ Df (c, x), for

all c ∈ C. Similarly, the right Bregman projection is the vector
−→
P Cx ∈ C

satisfying the inequality Df (x,
−→
P Cx) ≤ Df (x, c), for any c ∈ C.

The alternating minimization approach described above to minimize
the proximity function

F (x) =

I∑
i=1

Di(
←−
P ix, x) (10.19)

can be viewed as an alternating projection method, but employing both
right and left Bregman projections.

Consider the problem of finding a member of the intersection of two
closed convex sets C and D. We could proceed as follows: having found
xn, minimize Df (xn, d) over all d ∈ D, obtaining d =

−→
P Dx

n, and then

minimize Df (c,
−→
P Dx

n) over all c ∈ C, obtaining c = xn+1 =
←−
P C
−→
P Dx

n.
The objective of this algorithm is to minimize Df (c, d) over all c ∈ C and
d ∈ D; such a minimum may not exist, of course.

In [5] the authors note that the alternating minimization algorithm of
[34] involves right and left Bregman projections, which suggests to them
iterative methods involving a wider class of operators that they call “Breg-
man retractions”.

10.5 More Proximity Function Minimization

Proximity function minimization and right and left Bregman projections
play a role in a variety of iterative algorithms. We survey several of them
in this section.

10.5.1 Cimmino’s Algorithm

Our objective here is to find an exact or approximate solution of the system
of I linear equations in J unknowns, written Ax = b. For each i let

Ci = {z|(Az)i = bi}, (10.20)

and Pix be the orthogonal projection of x onto Ci. Then

(Pix)j = xj + αiAij(bi − (Ax)i), (10.21)

where

(αi)
−1 =

J∑
j=1

A2
ij . (10.22)
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Let

F (x) =

I∑
i=1

‖Pix− x‖22. (10.23)

Using alternating minimization on this proximity function gives Cimmino’s
algorithm, with the iterative step

xkj = xk−1j +
1

I

I∑
i=1

αiAij(bi − (Axk−1)i). (10.24)

10.5.2 Simultaneous Projection for Convex Feasibility

Now we let Ci be any closed convex subsets of RJ and define F (x) as in the
previous section. Again, we apply alternating minimization. The iterative
step of the resulting algorithm is

xk =
1

I

I∑
i=1

Pix
k−1. (10.25)

The objective here is to minimize F (x), if there is a minimum.

10.5.3 The Bauschke-Combettes-Noll Problem

In [6] Bauschke, Combettes and Noll consider the following problem: min-
imize the function

Θ(p, q) = Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (10.26)

where φ and ψ are convex on RJ , D = Df is a Bregman distance, and
P = Q is the interior of the domain of f . They assume that

b = inf
(p,q)

Λ(p, q) > −∞, (10.27)

and seek a sequence {(pn, qn)} such that {Λ(pn, qn)} converges to b. The se-
quence is obtained by the AM method, as in our previous discussion. They
prove that, if the Bregman distance is jointly convex, then {Λ(pn, qn)} ↓ b.
In this subsection we obtain this result by showing that Λ(p, q) has the five-
point property whenever D = Df is jointly convex. Our proof is loosely
based on the proof of the Eggermont-LaRiccia lemma.

The five-point property for Λ(p, q) is

Λ(p, qn−1)− Λ(pn, qn−1) ≥ Λ(p, qn)− Λ(p, q). (10.28)
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A simple calculation shows that the inequality in (10.28) is equivalent to

Λ(p, q)− Λ(pn, qn) ≥

D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (10.29)

By the joint convexity of D(p, q) and the convexity of φ and ψ we have

Λ(p, q)− Λ(pn, qn) ≥

〈∇pΛ(pn, qn), p− pn〉+ 〈∇qΛ(pn, qn), q − qn〉, (10.30)

where ∇pΛ(pn, qn) denotes the gradient of Λ(p, q), with respect to p, eval-
uated at (pn, qn).

Since qn minimizes Λ(pn, q), it follows that

〈∇qΛ(pn, qn), q − qn〉 = 0, (10.31)

for all q. Therefore,

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉 . (10.32)

We have
〈∇pΛ(pn, qn), p− pn〉 =

〈∇f(pn)−∇f(qn), p− pn〉+ 〈∇φ(pn), p− pn〉. (10.33)

Since pn minimizes Λ(p, qn−1), we have

∇pΛ(pn, qn−1) = 0, (10.34)

or

∇φ(pn) = ∇f(qn−1)−∇f(pn), (10.35)

so that

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(qn−1)−∇f(qn), p− pn〉 (10.36)

= D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (10.37)

Using (10.32) we obtain the inequality in (10.29). This shows that Λ(p, q)
has the five-point property whenever the Bregman distance D = Df is
jointly convex. From our previous discussion of AM, we conclude that the
sequence {Λ(pn, qn)} converges to b; this is Corollary 4.3 of [6].

As we saw previously, the expectation maximization maximum likeli-
hood (EM) method involves alternating minimization of a function of the
form Λ(p, q).

If ψ = 0, then {Λ(pn, qn)} converges to b, even without the assumption
that the distance Df is jointly convex. In such cases, Λ(p, q) has the form of
the objective function in proximal minimization and therefore the problem
falls into the SUMMA class (see Lemma 5.1).
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10.6 AM as SUMMA

We show now that the SUMMA class of AF methods includes all the AM
methods for which the five-point property holds.

For each p in the set P , define q(p) in Q as a member of Q for which
Θ(p, q(p)) ≤ Θ(p, q), for all q ∈ Q. Let f(p) = Θ(p, q(p)).

At the nth step of AM we minimize

Gn(p) = Θ(p, qn−1) = Θ(p, q(p)) +
(

Θ(p, qn−1)−Θ(p, q(p))
)

(10.38)

to get pn. With

gn(p) =
(

Θ(p, qn−1)−Θ(p, q(p))
)
≥ 0, (10.39)

we can write

Gn(p) = f(p) + gn(p). (10.40)

According to the five-point property, we have

Gn(p)−Gn(pn) ≥ Θ(p, qn)−Θ(p, q(p)) = gn+1(p). (10.41)

It follows that AM is a member of the SUMMA class.
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Appendix One: Theorem
1.3 Revisited

11.1 Improving Theorem 1.3

The proof of Theorem 1.3 made use of the restriction that γ be in the
interval (0, 1

L ). For convergence, we need only that γ be in the interval
(0, 2

L ), as the following theorem asserts.

Theorem 11.1 Let f : RJ → R be differentiable, with L-Lipschitz con-
tinuous gradient. For γ in the interval (0, 2

L ) the sequence {xk} given by
Equation (1.35) converges to a minimizer of f , whenever minimizers exist.

11.2 Properties of the Gradient

Theorem 11.2 Let g : RJ → R be differentiable. The following are equiv-
alent:

• 1) g(x) is convex;

• 2) for all a and b we have

g(b) ≥ g(a) + 〈∇g(a), b− a〉 ; (11.1)

• 3) for all a and b we have

〈∇g(b)−∇g(a), b− a〉 ≥ 0. (11.2)

Because the operator ∇f is L-Lipschitz continuous, the gradient of the
function g(x) = 1

Lf(x) is non-expansive, that is,

‖∇g(x)−∇g(y)‖ ≤ ‖x− y‖, (11.3)
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for all x and y.

11.3 Non-expansive gradients

In [51] Golshtein and Tretyakov prove the following theorem.

Theorem 11.3 Let g : RJ → R be convex and differentiable. The follow-
ing are equivalent:

• 1)

||∇g(x)−∇g(y)||2 ≤ ||x− y||2; (11.4)

• 2)

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
1

2
||∇g(x)−∇g(y)||22; (11.5)

and

• 3)

〈∇g(x)−∇g(y), x− y〉 ≥ ||∇g(x)−∇g(y)||22. (11.6)

Proof: The only non-trivial step in the proof is showing that Inequality
(11.4) implies Inequality (11.5). From Theorem 11.2 we see that Inequality
(11.4) implies that the function h(x) = 1

2‖x‖
2 − g(x) is convex, and that

1

2
‖x− y‖2 ≥ g(x)− g(y)− 〈∇g(y), x− y〉 ,

for all x and y. Now fix y and define

d(z) = Dg(z, y) = g(z)− g(y)− 〈∇g(y), z − y〉,

for all z. Since the function g(z) is convex, so is d(z). Since

∇d(z) = ∇g(z)−∇g(y),

it follows from Inequality (11.4) that

‖∇d(z)−∇d(x)‖ ≤ ‖z − x‖,

for all x and z. Then, from our previous calculations, we may conclude
that

1

2
‖z − x‖2 ≥ d(z)− d(x)− 〈∇d(x), z − x〉 ,

for all z and x.
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Now let x be arbitrary and

z = x−∇g(x) +∇g(y).

Then

0 ≤ d(z) ≤ d(x)− 1

2
‖∇g(x)−∇g(y)‖2.

This completes the proof.

This proof is not the same as the one given in [51]. Now we can prove
Theorem 11.1.

11.4 Proof of Theorem 11.1

Let f(z) ≤ f(x), for all x; then ∇f(z) = 0. Then

‖z − xk‖2 = ‖z − xk−1 + γ∇f(xk−1)‖2 =

‖z−xk−1‖2− 2γ〈∇f(z)−∇f(xk−1), z−xk−1〉 +γ2‖∇f(z)−∇f(xk−1)‖2.

Therefore,
‖z − xk−1‖2 − ‖z − xk‖2 =

2γL〈∇g(z)−∇g(xk−1), z − xk−1〉 − γ2L2‖∇g(z)−∇g(xk−1)‖2 ≥

(2γL− γ2L2)‖∇g(z)−∇g(xk−1)‖2.

Since 0 < γ < 2
L , the sequence {‖z − xk‖} is decreasing and the sequence

{‖∇f(z) − ∇f(xk)‖} converges to zero. There is then a subsequence of
{xk} converging to some x∗ with ∇f(x∗) = 0, so that x∗ is a minimizer
of f . Replacing the generic z with x∗, we find that the sequence {xk}
converges to x∗. This completes the proof.

We can interpret Theorem 11.3 as saying that, if g is convex and differ-
entiable, and its gradient is non-expansive in the 2-norm, then the gradient
of g is a firmly non-expansive operator [28].

If f : RJ → R is convex and differentiable, and its gradient is L-
Lipschitz continuous, that is,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2,

then the gradient of g(x) = 1
Lf(x) is a firmly non-expansive operator. It

then follows that the operator I − γ∇f is an averaged operator, for any γ
in the interval (0, 2

L ) [28].
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Chapter 12

Appendix Two:
Bregman-Legendre
Functions

In [3] Bauschke and Borwein show convincingly that the Bregman-Legendre
functions provide the proper context for the discussion of Bregman pro-
jections onto closed convex sets. The summary here follows closely the
discussion given in [3].

12.1 Essential Smoothness and Essential Strict
Convexity

Following [69] we say that a closed proper convex function f is essentially
smooth if intD is not empty, f is differentiable on intD and xn ∈ intD,
with xn → x ∈ bdD, implies that ||∇f(xn)||2 → +∞. Here

D = {x|f(x) < +∞},

and intD and bdD denote the interior and boundary of the set D. A closed
proper convex function f is essentially strictly convex if f is strictly convex
on every convex subset of dom ∂f .

The closed proper convex function f is essentially smooth if and only if
the subdifferential ∂f(x) is empty for x ∈ bdD and is {∇f(x)} for x ∈ intD
(so f is differentiable on intD) if and only if the function f∗ is essentially
strictly convex.

Definition 12.1 A closed proper convex function f is said to be a Legen-
dre function if it is both essentially smooth and essentialy strictly convex.
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So f is Legendre if and only if its conjugate function is Legendre, in
which case the gradient operator ∇f is a topological isomorphism with
∇f∗ as its inverse. The gradient operator ∇f maps int dom f onto int
dom f∗. If int dom f∗ = RJ then the range of ∇f is RJ and the equation
∇f(x) = y can be solved for every y ∈ RJ . In order for int dom f∗ = RJ it
is necessary and sufficient that the Legendre function f be super-coercive,
that is,

lim
||x||2→+∞

f(x)

||x||2
= +∞. (12.1)

If the effective domain of f is bounded, then f is super-coercive and its
gradient operator is a mapping onto the space RJ .

12.2 Bregman Projections onto Closed Con-
vex Sets

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (12.2)

Note that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let K be a nonempty closed convex set with K ∩ intD 6= ∅. Pick z ∈
intD. The Bregman projection of z onto K, with respect to f , is

←−
P
f

K(z) = argminx∈K∩DDf (x, z). (12.3)

If f is essentially strictly convex, then
←−
P
f

K(z) exists. If f is strictly convex

on D then
←−
P
f

K(z) is unique. If f is Legendre, then
←−
P
f

K(z) is uniquely
defined and is in intD; this last condition is sometimes called zone consis-
tency.

Example: Let J = 2 and f(x) be the function that is equal to one-half the
norm squared on D, the nonnegative quadrant, +∞ elsewhere. Let K be
the set K = {(x1, x2)|x1 + x2 = 1}. The Bregman projection of (2, 1) onto
K is (1, 0), which is not in intD. The function f is not essentially smooth,
although it is essentially strictly convex. Its conjugate is the function f∗

that is equal to one-half the norm squared on D and equal to zero elsewhere;
it is essentially smooth, but not essentially strictly convex.
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If f is Legendre, then
←−
P
f

K(z) is the unique member of K ∩ intD satis-
fying the inequality

〈∇f(
←−
P
f

K(z))−∇f(z),
←−
P
f

K(z)− c〉 ≥ 0, (12.4)

for all c ∈ K. From this we obtain the Bregman Inequality:

Df (c, z) ≥ Df (c,
←−
P
f

K(z)) +Df (
←−
P
f

K(z), z), (12.5)

for all c ∈ K.

12.3 Bregman-Legendre Functions

Following Bauschke and Borwein [3], we say that a Legendre function f is
a Bregman-Legendre function if the following properties hold:

B1: for x in D and any a > 0 the set {z|Df (x, z) ≤ a} is bounded.
B2: if x is in D but not in intD, for each positive integer n, yn is in intD
with yn → y ∈ bdD and if {Df (x, yn)} remains bounded, then Df (y, yn)→
0, so that y ∈ D.
B3: if xn and yn are in intD, with xn → x and yn → y, where x and y
are in D but not in intD, and if Df (xn, yn)→ 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges
to a member ofK provided that one of the following holds: 1) f is Bregman-
Legendre; 2) K ∩ intD 6= ∅ and dom f∗ is open; or 3) dom f and dom f∗

are both open.
The Bregman functions form a class closely related to the Bregman-

Legendre functions. For details see [12].

12.4 Useful Results about Bregman-Legendre
Functions

The following results are proved in somewhat more generality in [3].
R1: If yn ∈ int dom f and yn → y ∈ int dom f , then Df (y, yn)→ 0.
R2: If x and yn ∈ int dom f and yn → y ∈ bd dom f , then Df (x, yn)→
+∞.
R3: If xn ∈ D, xn → x ∈ D, yn ∈ int D, yn → y ∈ D, {x, y}∩ int D 6= ∅
and Df (xn, yn)→ 0, then x = y and y ∈ int D.
R4: If x and y are in D, but are not in int D, yn ∈ int D, yn → y and
Df (x, yn)→ 0, then x = y.
As a consequence of these results we have the following.
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R5: If {Df (x, yn)} → 0, for yn ∈ int D and x ∈ RJ , then {yn} → x.

Proof of R5: Since {Df (x, yn)} is eventually finite, we have x ∈ D. By
Property B1 above it follows that the sequence {yn} is bounded; without
loss of generality, we assume that {yn} → y, for some y ∈ D. If x is in int
D, then, by result R2 above, we know that y is also in int D. Applying
result R3, with xn = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in int D, then y is in D, by result R2. There are
two cases to consider: 1) y is in int D; 2) y is not in int D. In case 1) we
have Df (x, yn) → Df (x, y) = 0, from which it follows that x = y. In case
2) we apply result R4 to conclude that x = y.
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Appendix Three: Urn
Models in Remote Sensing

13.1 Chapter Summary

Many inverse problems are problems of remote sensing, which we might
also call indirect measurement. In such problems we do not have direct
access to what we are really interested in, and must be content to measure
something else that is related to, but not the same as, what interests us.
For example, we want to know what is in the suitcases of airline passengers,
but, for practical reasons, we cannot open every suitcase. Instead, we x-
ray the suitcases. A recent paper describes progress in detecting nuclear
material in cargo containers by measuring the scattering, by the shielding,
of cosmic rays; you can’t get much more remote than that. It is a good
idea to consider a model that, although quite simple, manages to capture
many of the important features of remote sensing applications. To convince
the reader that this is indeed a useful model, we relate it to the problem
of image reconstruction in single-photon computed emission tomography
(SPECT).

13.2 The Urn Model

There seems to be a tradition in physics of using simple models or examples
involving urns and marbles to illustrate important principles. In keeping
with that tradition, we have here two examples, to illustrate various aspects
of remote sensing.

Suppose that we have J urns numbered j = 1, ..., J , each containing
marbles of various colors. Suppose that there are I colors, numbered i =
1, ..., I. Suppose also that there is a box containing a large number of small
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pieces of paper, and on each piece is written the number of one of the J
urns. Assume that I know the precise contents of each urn. My objective is
to determine the precise contents of the box, that is, to estimate, for each
j = 1, ..., J , the probability of selecting the jth urn, which is the relative
number of pieces of paper containing the number j.

Out of my view, my assistant removes one piece of paper from the box,
takes one marble from the indicated urn, announces to me the color of the
marble, and then replaces both the piece of paper and the marble. This
action is repeated N times, at the end of which I have a long list of colors,
i = {i1, i2, ..., iN}, where in denotes the color of the nth marble drawn.
This list i is my data, from which I must determine the contents of the
box.

This is a form of remote sensing; what we have access to is related to,
but not equal to, what we are interested in. What I wish I had is the list of
urns used, j = {j1, j2, ..., jN}; instead I have i, the list of colors. Sometimes
data such as the list of colors is called “incomplete data” , in contrast to
the “complete data” , which would be the list j of the actual urn numbers
drawn from the box.

Using our urn model, we can begin to get a feel for the resolution
problem. If all the marbles of one color are in a single urn, the problem is
trivial; when I hear a color, I know immediately which urn contained that
marble. My list of colors is then a list of urn numbers; I have the complete
data now. My estimate of the number of pieces of paper containing the
urn number j is then simply the proportion of draws that resulted in urn
j being selected.

At the other extreme, suppose two urns have identical contents. Then I
cannot distinguish one urn from the other and I am unable to estimate more
than the total number of pieces of paper containing either of the two urn
numbers. If the two urns have nearly the same contents, we can distinguish
them only by using a very large N . This is the resolution problem.

Generally, the more the contents of the urns differ, the easier the task
of estimating the contents of the box. In remote sensing applications, these
issues affect our ability to resolve individual components contributing to
the data.

13.3 Some Mathematical Notation

To introduce some mathematical notation, let us denote by xj the propor-
tion of the pieces of paper that have the number j written on them. Let Pij
be the proportion of the marbles in urn j that have the color i. Let yi be the
proportion of times the color i occurs in the list of colors. The expected
proportion of times i occurs in the list is E(yi) =

∑J
j=1 Pijxj = (Px)i,

where P is the I by J matrix with entries Pij and x is the J by 1 column
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vector with entries xj . A reasonable way to estimate x is to replace E(yi)

with the actual yi and solve the system of linear equations yi =
∑J
j=1 Pijxj ,

i = 1, ..., I. Of course, we require that the xj be nonnegative and sum to
one, so special algorithms may be needed to find such solutions. In a num-
ber of applications that fit this model, such as medical tomography, the
values xj are taken to be parameters, the data yi are statistics, and the xj
are estimated by adopting a probabilistic model and maximizing the likeli-
hood function. Iterative algorithms, such as the expectation maximization
(EMML) algorithm are often used for such problems.

13.4 An Application to SPECT Imaging

In single-photon computed emission tomography (SPECT) the patient is
injected with a chemical to which a radioactive tracer has been attached.
Once the chemical reaches its destination within the body the photons
emitted by the radioactive tracer are detected by gamma cameras outside
the body. The objective is to use the information from the detected photons
to infer the relative concentrations of the radioactivity within the patient.

We discretize the problem and assume that the body of the patient
consists of J small volume elements, called voxels, analogous to pixels in
digitized images. We let xj ≥ 0 be the unknown amount of the radioactiv-
ity that is present in the jth voxel, for j = 1, ..., J . There are I detectors,
denoted {i = 1, 2, ..., I}. For each i and j we let Pij be the known proba-
bility that a photon that is emitted from voxel j is detected at detector i.
We denote by in the detector at which the nth emitted photon is detected.
This photon was emitted at some voxel, denoted jn; we wish that we had
some way of learning what each jn is, but we must be content with knowing
only the in. After N photons have been emitted, we have as our data the
list i = {i1, i2, ..., iN}; this is our incomplete data. We wish we had the
complete data, that is, the list j = {j1, j2, ..., jN}, but we do not. Our goal
is to estimate the frequency with which each voxel emitted a photon, which
we assume, reasonably, to be proportional to the unknown amounts xj , for
j = 1, ..., J .

This problem is completely analogous to the urn problem previously
discussed. Any mathematical method that solves one of these problems
will solve the other one. In the urn problem, the colors were announced;
here the detector numbers are announced. There, I wanted to know the
urn numbers; here I want to know the voxel numbers. There, I wanted to
estimate the frequency with which the jth urn was used; here, I want to
estimate the frequency with which the jth voxel is the site of an emission.
In the urn model, two urns with nearly the same contents are hard to
distinguish unless N is very large; here, two neighboring voxels will be
very hard to distinguish (i.e., to resolve) unless N is very large. But in the
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SPECT case, a large N means a high dosage, which will be prohibited by
safety considerations. Therefore, we have a built-in resolution problem in
the SPECT case.

Both problems are examples of probabilistic mixtures, in which the
mixing probabilities are the xj that we seek. The maximum likelihood
(ML) method of statistical parameter estimation can be used to solve such
problems.
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