
Alternating Minimization, Optimization Transfer
and Proximal Minimization Are Equivalent

(9/16/15 draft)

Charles L. Byrne∗

September 16, 2015

Abstract

Let X be an arbitrary nonempty set and f : X → R. The objective is to min-
imize f(x) over x ∈ X. In proximal minimization algorithms (PMA) we mini-
mize f(x) +d(x, xk−1) to get xk. The d : X×X → R+ is a “distance”function,
with d(x, x) = 0, for all x. In majorization minimization (MM), also called op-
timization transfer, a second “majorizing” function g(x|z) is postulated, with
the properties g(x|z) ≥ f(x), for all x and z in X, and g(x|x) = f(x). We then
minimize g(x|xk−1) to get xk. With

d(x, z)
.
= g(x|z)− f(x),

it is clear that MM is equivalent to PMA. Alternating minimization (AM)
methods appear to be more general, but AM is equivalent to PMA and to MM.

Let Φ : X × Y → R+, where X and Y are arbitrary nonempty sets. The
objective in alternating minimization is to find x̂ ∈ X and ŷ ∈ Y such that

Φ(x̂, ŷ) ≤ Φ(x, y),

for all x ∈ X and y ∈ Y . For each k we minimize Φ(x, yk−1) to get xk−1 and
then minimize Φ(xk−1, y) to get yk. For each x ∈ X, let y(x) ∈ Y be such that
Φ(x, y) ≥ Φ(x, y(x)), for all y ∈ Y ; then yk = y(xk−1). Minimizing Φ(x, y)
over all x ∈ X and y ∈ Y is equivalent to minimizing f(x)

.
= Φ(x, y(x)) over

all x ∈ X. With d(x, x′) = Φ(x, y(x′)) − Φ(x, y(x)), minimizing Φ(x, yk) is
equivalent to minimizing f(x) + d(x, xk−1). Therefore, all AM algorithms are
instances of PMA, and therefore, of MM.

∗Charles Byrne@uml.edu, Department of Mathematical Sciences, University of Massachusetts
Lowell, Lowell, MA 01854

1

1 Auxiliary-Function Methods in Optimization

Let f : X → R, where X is an arbitrary nonempty set. In applications the set X

will have additional structure, but not always that of a Euclidean space; for that

reason, it is convenient to impose no structure at the outset. An iterative procedure

for minimizing f(x) over x ∈ X is called an auxiliary-function (AF) algorithm [4, 7]

if, at each step, we minimize

Gk(x) = f(x) + gk(x), (1.1)

where gk(x) ≥ 0, and gk(x
k−1) = 0. It follows easily that the sequence {f(xk)} is

decreasing, so {f(xk)} ↓ β∗ ≥ −∞. We want more, however; we want β∗ = β
.
=

infx∈X f(x). To have this we need to impose an additional condition on the auxiliary

functions gk(x); the SUMMA Inequality is one such additional condition.

1.1 The SUMMA Inequality

We say that an AF algorithm is in the SUMMA class if the SUMMA Inequality holds

for all x in X:

Gk(x)−Gk(x
k) ≥ gk+1(x). (1.2)

One consequence of the SUMMA Inequality is

gk(x) + f(x) ≥ gk+1(x) + f(xk), (1.3)

for all x ∈ X. It follows from this that β∗ = β. If this were not the case, then there

would be z ∈ X with

f(xk) ≥ β∗ > f(z)

for all k. The sequence {gk(z)} would then be a decreasing sequence of nonnegative

terms with the sequence of its successive differences bounded below by β∗−f(z) > 0.

There are many iterative algorithms that satisfy the SUMMA Inequality [4], and

are therefore in the SUMMA class. However, some important methods that are not

in this class still have β∗ = β; one example is the proximal minimization method of

Auslender and Teboulle [2]. This suggests that the SUMMA class, large as it is, is

still unnecessarily restrictive. This leads us to the definition of the SUMMA2 class.

1.2 The SUMMA2 Class

An iterative algorithm for minimizing f : X → R is said to be in the SUMMA2 class if,

for each sequence {xk} generated by the algorithm, there are functions hk : X → R+

2

such that, for all x ∈ X, we have

hk(x) + f(x) ≥ hk+1(x) + f(xk). (1.4)

Any algorithm in the SUMMA class is in the SUMMA2 class; use hk = gk. As in the

SUMMA case, we must have β∗ = β, since otherwise the successive differences of the

sequence {hk(z)} would be bounded below by β∗−f(z) > 0. It is helpful to note that

the functions hk need not be the gk, and we do not require that hk(x
k−1) = 0. The

proximal minimization method of Auslender and Teboulle is in the SUMMA2 class.

2 PMA is MM

In proximal minimization algorithms (PMA) we minimize

f(x) + d(x, xk−1) (2.1)

to get xk. Here d(x, z) ≥ 0 and d(x, x) = 0, so we say that d(x, z) is a distance.

In [8] the authors review the use, in statistics, of “majorization minimization”

(MM), also called “optimization transfer”. In numerous papers [10, 1] Jeff Fessler

and his colleagues use the terminology “surrogate-function minimization” to describe

optimization transfer. The objective is to minimize f : X → R. In MM methods a

second “majorizing” function g(x|z) is postulated, with the properties g(x|z) ≥ f(x),

for all x and z in X, and g(x|x) = f(x). We then minimize g(x|xk−1) to get xk.

Defining

d(x, z)
.
= g(x|z)− f(x),

it is clear that d(x, z) is a distance and so MM is equivalent to PMA.

Every MM algorithm, and therefore every PMA, can be viewed as an application

of alternating minimization: define Φ(x, z)
.
= g(x|z). Minimizing g(x|xk−1) to get

xk is equivalent to minimizing Φ(x, xk−1), while minimizing g(xk|z) is equivalent to

minimizing Φ(xk, z) and yields z = xk.

3

3 Alternating Minimization (AM)

In this section we review the basics of alternating minimization (AM).

3.1 The AM Method

Let Φ : X × Y → R+, where X and Y are arbitrary nonempty sets. The objective is

to find x̂ ∈ X and ŷ ∈ Y such that

Φ(x̂, ŷ) ≤ Φ(x, y),

for all x ∈ X and y ∈ Y .

The alternating minimization method [9] is to minimize Φ(x, yk−1) to get xk−1

and then to minimize Φ(xk−1, y) to get yk. Clearly, the sequence {Φ(xk−1, yk)} is

decreasing and converges to some β∗ ≥ −∞. We want β∗ = Φ(x̂, ŷ), or, at least, for

β∗ = β, where β = infx,y Φ(x, y).

It is helpful to reformulate AM as a method for minimizing a function f(x) of the

single variable x ∈ X. For each x ∈ X, let y(x) ∈ Y be such that Φ(x, y) ≥ Φ(x, y(x)),

for all y ∈ Y . Then minimizing Φ(x, y) over all x ∈ X and y ∈ Y is equivalent to

minimizing f(x)
.
= Φ(x, y(x)) over all x ∈ X. Note that Φ(xk−1, yk) = f(xk−1). Then

the sequence {f(xk)} is decreasing to β∗.

In AM we find xk by minimizing Φ(x, yk) = Φ(x, y(xk−1)). For each x and x′ in

X we define

d(x, x′)
.
= Φ(x, y(x′))− Φ(x, y(x)). (3.1)

Clearly, d(x, x′) ≥ 0 and d(x, x) = 0, so d(x, x′) is a “distance”. We obtain xk by

minimizing

Φ(x, y(xk−1)) = Φ(x, y(x)) + Φ(x, y(xk−1))− Φ(x, y(x)) = f(x) + d(x, xk−1),

which shows that every AM algorithm is also a PMA algorithm. Given any AM algo-

rithm, we define f(x) = Φ(x, y(x)). Then the function g(x|z) = Φ(x, y(z)) majorizes

f(x). Consequently, AM, PMA and MM are equivalent to one another. Now we can

obtain conditions on MM algorithms sufficient for β∗ = β from analogous conditions

expressed in the language of AM or PMA.

3.2 The Three-Point Property

The three-point property (3PP) in [9] is the following: for all x ∈ X and y ∈ Y and

for all k we have

Φ(x, yk)− Φ(xk, yk) ≥ d(x, xk). (3.2)

4

The 3PP implies that the AM algorithm, expressed as a PMA, is in the SUMMA

class and so is sufficient to have β∗ = β.

3.3 The Weak Three-Point Property

The 3PP is stronger than we need to get β∗ = β; the weak 3PP implies that the

AM algorithm, expressed as a PMA, is in the SUMMA2 class, and so is sufficient for

β∗ = β. The weak three-point property (w3PP) is the following: for all x ∈ X and

y ∈ Y and for all k we have

Φ(x, yk)− Φ(xk, yk+1) ≥ d(x, xk). (3.3)

3.4 Consequences of the w3PP

From the w3PP we find that, for all x and y,

d(x, xk−1)− d(x, xk) ≥ Φ(xk, yk+1)− Φ(x, y(x)). (3.4)

Since

Φ(xk, yk+1)− Φ(x, y(x)) = f(xk)− f(x)

we conclude that, whenever the w3PP holds, we have

d(x, xk−1)− d(x, xk) ≥ f(xk)− f(x), (3.5)

for all x ∈ X. This means that AM with the w3PP is in the SUMMA2 class of

iterative algorithms, from which it follows that β∗ = β.

3.5 When Do We Have β∗ = β?

As we have noted, an AM method for which the w3PP holds is in the SUMMA2 class,

so that β∗ = β. We can formulate this in the language of MM as follows:

g(x|xk−1)− g(x|xk) ≥ f(xk)− f(x) (3.6)

for all x. In the language of PMA it becomes

d(x, xk−1)− d(x, xk) ≥ f(xk)− f(x) (3.7)

for all x.

5

4 PMA with Bregman Distances (PMAB)

Let f : RJ → R and h : RJ → R be convex and differentiable. Let Dh(x, z) be the

Bregman distance associated with h. At the kth step of a proximal minimization

algorithm with Bregman distance (PMAB) we minimize

Gk(x) = f(x) +Dh(x, x
k−1) (4.8)

to get xk. It was shown in [4] that such algorithms are in the SUMMA class.

In order to minimize Gk(x) we need to solve the equation

0 = ∇f(x) +∇h(x)−∇h(xk−1) (4.9)

for x = xk; generally, this is not easy. Here is a “trick” that can be used to simplify

the calculations. Select a function g so that h
.
= g − f is convex and differentiable

and so that the equation

0 = ∇g(x)−∇g(xk−1) +∇f(xk−1) (4.10)

is easily solved. As an example, we use this “trick” to derive the Landweber algo-

rithm.

5 The Landweber Algorithm

Suppose we want to find a minimizer of the function f(x) = ‖Ax − b‖2, where A

is a real I by J matrix. Let g(x) = 1
γ
‖x‖2, for some γ in the interval (0, 2

L
), where

L = ρ(ATA), the largest eigenvalue of the matrix ATA. Then the function h = g− f
is convex and differentiable. We have

Df (x, y) = ‖Ax− Ay‖2, (5.11)

so that

Dh(x, y) =
1

γ
‖x− y‖2 − ‖Ax− Ay‖2. (5.12)

At the kth step we differentiate

‖Ax− b‖2 +
1

γ
‖x− xk−1‖2 − ‖Ax− Axk−1‖2, (5.13)

to obtain

0 = AT (Ax− b) +
1

γ
(x− xk−1)− AT (Ax− Axk−1) (5.14)

6

so that

xk = xk−1 − γAT (Axk−1 − b). (5.15)

This is the iterative step of Landweber’s algorithm. The sequence {xk} converges to

a minimizer x∗ of f(x), and x∗ minimizes ‖x̂−x0‖ over all x̂ that minimize ‖Ax− b‖.

References

1. Ahn, S., Fessler, J., Blatt, D., and Hero, A. (2006) “Convergent incremental

optimization transfer algorithms: application to tomography.”IEEE Transactions

on Medical Imaging, 25(3), pp. 283–296.

2. Auslender, A., and Teboulle, M. (2006) “Interior gradient and proximal methods

for convex and conic optimization.” SIAM Journal on Optimization, 16(3), pp.

697–725.

3. Butnariu, D., Censor, Y., and Reich, S. (eds.) (2001) Inherently Parallel Algo-

rithms in Feasibility and Optimization and their Applications, Studies in Com-

putational Mathematics 8. Amsterdam: Elsevier Publ.

4. Byrne, C. (2008) “Sequential unconstrained minimization algorithms for con-

strained optimization.” Inverse Problems, 24(1), article no. 015013.

5. Byrne, C. (2013) “Alternating minimization as sequential unconstrained mini-

mization: a survey.” Journal of Optimization Theory and Applications, electronic

154(3), DOI 10.1007/s1090134-2, (2012), and hardcopy 156(3), February, 2013,

pp. 554–566.

6. Byrne, C. (2014) Iterative Optimization in Inverse Problems. Boca Raton, FL:

CRC Press.

7. Byrne, C. (2015) “The EM algorithm and related methods for iterative optimiza-

tion.” unpublished notes.

8. Chi, E., Zhou, H., and Lange, K. (2014) “Distance Majorization and Its Appli-

cations.” Mathematical Programming, 146 (1-2), pp. 409–436.

9. Csiszár, I. and Tusnády, G. (1984) “Information geometry and alternating mini-

mization procedures.”Statistics and Decisions Supp. 1, pp. 205–237.

7

10. Erdogan, H., and Fessler, J. (1999) “Monotonic algorithms for transmission to-

mography.” IEEE Transactions on Medical Imaging, 18(9), pp. 801–814.

11. Lange, K., Hunter, D., and Yang, I. (2000) “Optimization transfer using surrogate

objective functions (with discussion).” J. Comput. Graph. Statist., 9, pp. 1–20.

8

