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Abstract

Sequential unconstrained minimization is a general iterative method for
minimizing a function over a given set. At each step of the iteration we mini-
mize the sum of the objective function and an auxiliary function. The aim is
to select the auxiliary functions so that, at least, we get convergence in func-
tion value to the constrained minimum. The SUMMA is a broad class of these
methods for which such convergence holds. Included in the SUMMA class
are the barrier-function methods, entropic and other proximal minimization
algorithms, the simultaneous multiplicative algebraic reconstruction technique,
and, after some reformulation, penalty-function methods. The alternating min-
imization method of Csiszár and Tusnády also falls within the SUMMA class,
whenever their five-point property holds. Therefore, the expectation maximiza-
tion maximum likelihood algorithm for the Poisson case is also in the SUMMA
class.
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1 Introduction

The alternating minimization (AM) method of Csiszár and Tusnády [1] is a framework

for minimizing a function of two separately constrained variables. When their five-

point property holds, the function values converge monotonically to the infimum of

the function values over the constraint sets.
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It was noticed by Rockmore and Macovski [2] that the image reconstruction prob-

lems that arise in medical tomography can be formulated as statistical parameter

estimation problems. Following up on this idea, Shepp and Vardi [3] suggested the

use of the EM algorithm, called here the EMML algorithm, for solving the recon-

struction problem in emission tomography. In [4] Lange and Carson presented an

EM-type iterative method for transmission tomographic image reconstruction, and

pointed out a gap in the convergence proof given in [3] for the emission case. In [5],

Vardi, Shepp and Kaufman repaired the earlier proof, relying on techniques due to

Csiszár and Tusnády [1]. In [6] Lange, Bahn and Little improved the transmission

and emission algorithms, by including regularization to reduce the effects of noise.

The question of uniqueness of the solution in the inconsistent case was resolved in

[7, 8].

What is usually called the simultaneous multiplicative algebraic reconstruction

technique (SMART) was discovered independently in 1972, by Darroch and Ratcliff

[9], working in statistics, and by Schmidlin [10] in medical imaging. The SMART is

best derived using the AM formalism and provides an example of alternating mini-

mization having the five-point property. Details concerning the SMART can be found

in [7, 11], and in the references therein.

At each step of a sequential unconstrained minimization algorithm, one minimizes

the sum of the objective function and an auxiliary function. The auxiliary functions

can be chosen to enforce constraints on the vector variable, or simply to allow each

iterate to be obtained in closed form. When the auxiliary functions are properly

selected, the constraints are enforced and the iterated function values converge to the

infimum of the values of the function over the constraint set. A standard reference for

these methods is the 1967 book by Fiacco and McCormick [12]. The SUMMA [13] is a

broad class of sequential unconstrained minimization algorithms that includes barrier-

function methods, proximal minimization with Bregman functions [14, 15, 16], the

SMART, and, after some reformulation, penalty-function methods. The choice of the

auxiliary functions in SUMMA guarantees the convergence of the iterated function

values to the infimum.

We show here that the AM procedure discussed in [17] has the five-point property

whenever the Bregman distance involved is jointly convex, and that all AM methods

with the five-point property are members of the SUMMA class.
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2 Alternating Minimization

The alternating minimization (AM) approach of Csiszár and Tusnády [1] provides

a useful framework for the derivation of iterative optimization algorithms. In this

section we discuss their five-point property and convergence for their AM algorithm.

2.1 The AM Framework

Suppose that P and Q are two arbitrary non-empty sets and the function Θ(p, q)

satisfies −∞ < Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q. We assume that, for each

p ∈ P , there is q ∈ Q with Θ(p, q) < +∞. Therefore, b := infp∈P, q∈Q Θ(p, q) < +∞.

We assume also that b > −∞; in many applications, the function Θ(p, q) is non-

negative, so this additional assumption is unnecessary. We do not always assume

that there are p̂ ∈ P and q̂ ∈ Q such that Θ(p̂, q̂) = b; when we do assume that such

a p̂ and q̂ exist, we will not assume that p̂ and q̂ are unique with that property. The

objective is to generate a sequence {(pn, qn)} such that Θ(pn, qn)→ b, as n→ +∞.

2.2 The AM Iteration

The general AM method proceeds in two steps: we begin with some q0 and, having

found qn, we

• 1. minimize Θ(p, qn), over p ∈ P , to get p = pn+1, and then

• 2. minimize Θ(pn+1, q), over q ∈ Q, to get q = qn+1.

In certain applications, we consider the special case of alternating cross-entropy min-

imization. In that case, the p and q are non-negative vectors in RJ , and the function

Θ(p, q) will have the value +∞ whenever there is an index j such that pj > 0, but

qj = 0. It is important for those particular applications that we select q0 with all

positive entries. We therefore assume, for the general case, that we have selected q0

so that Θ(p, q0) is finite for all p.

The sequence {Θ(pn, qn)} is decreasing and bounded below by b, since we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1). (1)

Therefore, the sequence {Θ(pn, qn)} converges to some B ≥ b. Without additional

assumptions, we can say little more.

We know two things:

Θ(pn+1, qn)−Θ(pn+1, qn+1) ≥ 0, (2)
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and

Θ(pn, qn)−Θ(pn+1, qn) ≥ 0. (3)

The inequality in (3) can be strengthened to

Θ(p, qn)−Θ(pn+1, qn) ≥ 0. (4)

We need to make these inequalities more precise.

2.3 The Five-Point Property for AM

The five-point property is the following: for all p ∈ P and q ∈ Q and n = 1, 2, ...

The Five-Point Property

Θ(p, q) + Θ(p, qn−1) ≥ Θ(p, qn) + Θ(pn, qn−1). (5)

2.4 The Main Theorem for AM

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to converge to b;

that is, for B = b. The following is the main result of [1].

Theorem 2.1 If the five-point property holds, then B = b.

Proof: Suppose that B > b. Then there are p′ and q′ such that B > Θ(p′, q′) ≥ b.

From the five-point property we have

Θ(p′, qn−1)−Θ(pn, qn−1) ≥ Θ(p′, qn)−Θ(p′, q′), (6)

so that

Θ(p′, qn−1)−Θ(p′, qn) ≥ Θ(pn, qn−1)−Θ(p′, q′) ≥ 0. (7)

All the terms being subtracted can be shown to be finite. It follows that the sequence

{Θ(p′, qn−1)} is decreasing, bounded below, and therefore convergent. The right side

of (7) must therefore converge to zero, which is a contradiction. We conclude that

B = b whenever the five-point property holds in AM. �
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2.5 The Three- and Four-Point Properties

In [1] the five-point property is related to two other properties, the three- and four-

point properties. This is a bit peculiar for two reasons: first, as we have just seen, the

five-point property is sufficient to prove the main theorem; and second, these other

properties involve a second function, ∆ : P × P → [0,+∞], with ∆(p, p) = 0 for all

p ∈ P . The three- and four-point properties jointly imply the five-point property,

but to get the converse, we need to use the five-point property to define this second

function; it can be done, however.

The three-point property is the following:

The Three-Point Property

Θ(p, qn)−Θ(pn+1, qn) ≥ ∆(p, pn+1), (8)

for all p. The four-point property is the following:

The Four-Point Property

∆(p, pn+1) + Θ(p, q) ≥ Θ(p, qn+1), (9)

for all p and q.

Clearly the three- and four-point properties together imply the five-point property.

We show now that the three-point property and the four-point property are implied

by the five-point property. For that purpose, we need to define a suitable ∆(p, p̃).

For any p and p̃ in P define

∆(p, p̃) := Θ(p, q(p̃))−Θ(p, q(p)), (10)

where q(p) denotes a member of Q satisfying Θ(p, q(p)) ≤ Θ(p, q), for all q in Q.

Clearly, ∆(p, p̃) ≥ 0 and ∆(p, p) = 0. The four-point property holds automatically

from this definition, while the three-point property follows from the five-point pro-

perty. Therefore, it is sufficient to discuss only the five-point property when speaking

of the AM method.

Next, we discuss the SMART and EMML algorithms, two important instances of

alternating minimization.

2.6 The SMART

We consider now the simultaneous multiplicative algebraic reconstruction technique

(SMART) as an example of AM.
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Let y have only positive entries yi, and the matrix P have only non-negative entries

Pij, normalized so that
∑I

i=1 Pij = 1, for all j = 1, ..., J . The SMART iteration begins

with a positive vector x0 ∈ RJ . Having found the vector xn−1, the next vector in the

SMART sequence is xn, with entries given by

xnj = xn−1j exp
( I∑

i=1

Pij log
( yi

(Pxn−1)i

))
. (11)

The sequence {xn} converges to the non-negative minimizer of the functionKL(Px, y)

for which KL(x, x0) is minimized [7]; here KL denotes the Kullback-Leibler distance

between non-negative vectors [18]:

KL(x, z) =
J∑

j=1

xj log
xj
zj

+ zj − xj. (12)

In [7] it was shown that the SMART iteration can be obtained through AM and that

the five-point property holds.

2.7 The EMML Algorithm

The expectation maximization maximum likelihood (EMML) method we discuss here

is actually a special case of a more general approach to likelihood maximization,

usually called the EM algorithm [19]; the book by McLachnan and Krishnan [20] is

a good source for the history of this more general algorithm.

The EMML, as a statistical parameter estimation technique, was not originally

thought to be connected to any system of linear equations. In [7] it was shown that

the EMML algorithm minimizes the function f(x) = KL(y, Px), over non-negative

vectors x; consequently, when the non-negative system of linear equations Px = y

has a non-negative solution, the EMML converges to such a solution.

2.8 The EMML Iteration

The EMML iteration begins with a positive vector x0 ∈ RJ . Having found the vector

xn, the next vector in the EMML sequence is xn+1, with entries given by

xn+1
j = xnj

I∑
i=1

Pij

( yi
(Pxn)i

)
. (13)

The sequence {xn} converges to a non-negative minimizer of the function KL(y, Px).

In [5] it was shown that the EMML algorithm is a special case of AM and that the

five-point property holds.
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2.9 Alternating Bregman Distance Minimization

The general problem of minimizing Θ(p, q) is simply a minimization of a real-valued

function of two variables, p ∈ P and q ∈ Q. In many cases, the function Θ(p, q) is a

measure of distance between p and q, such as Θ(p, q) = ‖p− q‖22 for p and q in RJ , or

Θ(p, q) = KL(p, q), for non-negative vectors p and q. In the case of Θ(p, q) = ‖p−q‖22,
each step of the alternating minimization algorithm involves an orthogonal projection

onto a closed and convex set; both projections are with respect to the same Euclidean

distance function. In the case of cross-entropy minimization, we first project qn onto

the set P by minimizing the distance KL(p, qn) over all p ∈ P , and then project pn+1

onto the set Q by minimizing the distance function KL(pn+1, q). This suggests the

possibility of using alternating minimization with respect to more general distance

functions. We shall focus on Bregman distances.

Let f : RJ → R be a Bregman function [21, 16, 22]; therefore f is convex on its

domain and differentiable in the interior of its domain. Then, for x in the domain

and z in the interior, we define the Bregman distance Df (x, z) by

Df (x, z) := f(x)− f(z)− 〈∇f(z), x− z〉. (14)

For example, the KL distance is a Bregman distance generated by the Bregman

function

f(x) =
J∑

j=1

xj log xj − xj. (15)

Suppose now that f is a Bregman function and P and Q are closed and convex subsets

of the interior of the domain of f . Let pn+1 minimize Df (p, qn) over all p ∈ P . It

follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0, (16)

for all p ∈ P . From the three-point identity of Chen and Teboulle [23] we have

Df (p, qn)−Df (pn+1, qn) = Df (p, pn+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉; (17)

it follows that the three-point property holds, with

Θ(p, q) = Df (p, q), (18)

and

∆(p, p̂) = Df (p, p̃). (19)
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To get the four-point property we need to restrict Df somewhat; one such restriction

is that Df (p, q) be jointly convex, that is, it be convex in the combined vector variable

(p, q) [24]. The following lemma is due to Eggermont and LaRiccia [25].

Lemma 2.1 Suppose that the Bregman distance Df (p, q) is jointly convex. Then it

has the four-point property.

The alternating minimization method works for any Bregman distance that is

jointly convex. This includes the Euclidean and the KL distances.

3 Minimizing a Proximity Function

We present now an example of alternating Bregman distance minimization taken from

[26]. The problem is the convex feasibility problem (CFP), to find a member of the

intersection C ⊆ RJ of finitely many closed and convex sets Ci, i = 1, ..., I, or, failing

that, to minimize the proximity function

F (x) =
I∑

i=1

Di(
←−
P ix, x), (20)

where fi is a Bregman function for which Di, the associated Bregman distance, is

jointly convex, and
←−
P ix are the left Bregman projection of x onto the set Ci; that

is,
←−
P ix ∈ Ci and Di(

←−
P ix, x) ≤ Di(z, x), for all z ∈ Ci. Because each Di is jointly

convex, the function F is convex.

The problem can be formulated as an alternating minimization, where P ⊆ RIJ

is the product set P = C1 × C2 × ... × CI . A typical member of P has the form

p = (c1, c2, ..., cI), where ci ∈ Ci, and Q ⊆ RIJ is the diagonal subset, meaning

that the elements of Q are the I-fold product of a single x; that is Q = {d(x) :=

(x, x, ..., x) ∈ RIJ}. We then take

Θ(p, q) =
I∑

i=1

Di(c
i, x), (21)

and ∆(p, p̃) = Θ(p, p̃).

In [27], a similar iterative algorithm was developed for solving the CFP, using

the same sets P and Q, but using alternating projection, rather than alternating

minimization. Now it is not necessary that the Bregman distances be jointly convex.

Each iteration of their algorithm involves two steps:

• 1. minimize
∑I

i=1Di(c
i, xn) over ci ∈ Ci, obtaining ci =

←−
P ix

n, and then
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• 2. minimize
∑I

i=1Di(x,
←−
P ix

n).

Because this method is an alternating projection approach, it converges only when the

CFP has a solution, whereas the previous alternating minimization method minimizes

F (x), even when the CFP has no solution.

3.1 Right and Left Projections

Because Bregman distances Df are not generally symmetric, we can speak of right and

left Bregman projections onto a closed and convex set. For any allowable vector x,

the left Bregman projection of x onto C, if it exists, is the vector
←−
P Cx ∈ C satisfying

the inequality Df (
←−
P Cx, x) ≤ Df (c, x), for all c ∈ C. Similarly, the right Bregman

projection is the vector
−→
P Cx ∈ C satisfying the inequality Df (x,

−→
P Cx) ≤ Df (x, c),

for any c ∈ C.

The alternating minimization approach described above to minimize the proximity

function F in (20) can be viewed as an alternating projection method, but employing

both right and left Bregman projections.

Consider the problem of finding a member of the intersection of two closed and

convex sets C and D. We could proceed as follows: having found xn, minimize

Df (xn, d) over all d ∈ D, obtaining d =
−→
P Dx

n, and then minimize Df (c,
−→
P Dx

n)

over all c ∈ C, obtaining c = xn+1 =
←−
P C
−→
P Dx

n. The objective of this algorithm is

to minimize Df (c, d) over all c ∈ C and d ∈ D; such a minimum may not exist, of

course.

In [28] the authors note that the alternating minimization algorithm of [26] in-

volves right and left Bregman projections, which suggests to them iterative methods

involving a wider class of operators that they call “Bregman retractions”.

4 The Bauschke-Combettes-Noll Problem

In [17] Bauschke, Combettes and Noll consider the following problem:

minimize Θ(p, q) = Λ(p, q) := φ(p) + ψ(q) +Df (p, q), (22)

where φ and ψ are convex on RJ , D = Df is a Bregman distance, and P = Q is the

interior of the domain of f . They assume that

b := inf
(p,q)

Λ(p, q) > −∞, (23)

and seek a sequence {(pn, qn)} such that Λ(pn, qn) converges to b. The sequence is

obtained by the AM method, as in our previous discussion. They prove that, if the
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Bregman distance is jointly convex, then {Λ(pn, qn)} ↓ b. In this section, we obtain

this result by showing that Λ(p, q) has the five-point property whenever D = Df is

jointly convex. Our proof is loosely based on the proof of the Eggermont-LaRiccia

lemma.

The five-point property for Λ(p, q) is

Λ(p, qn−1)− Λ(pn, qn−1) ≥ Λ(p, qn)− Λ(p, q). (24)

A simple calculation shows that (24) is equivalent to

Λ(p, q)− Λ(pn, qn) ≥ D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (25)

By the joint convexity of D(p, q) and the convexity of φ and ψ we have

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉+ 〈∇qΛ(pn, qn), q − qn〉, (26)

where ∇pΛ(pn, qn) denotes the gradient of Λ(p, q), with respect to p, evaluated at

(pn, qn), and, similarly, ∇qΛ(pn, qn).

Since qn minimizes Λ(pn, q), it follows that

∇qΛ(pn, qn) = 0, (27)

for all q. Therefore,

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉 . (28)

We have

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉+ 〈∇φ(pn), p− pn〉. (29)

Since pn minimizes Λ(p, qn−1), we have

∇pΛ(pn, qn−1) = 0, (30)

or

∇φ(pn) = ∇f(qn−1)−∇f(pn), (31)

so that

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(qn−1)−∇f(qn), p− pn〉 (32)

= D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (33)
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Using (28) we obtain (25). This shows that Λ(p, q) has the five-point property when-

ever the Bregman distance D = Df is jointly convex.

From our previous discussion of AM, we conclude that the sequence {Λ(pn, qn)}
converges to b; this is Corollary 4.3 of [17].

In [29] it was shown that, in certain cases, the expectation maximization maximum

likelihood (EM) method involves alternating minimization of a function of the form

Λ(p, q).

5 The SUMMA

We turn now to an apparently unrelated problem. Let S be an arbitrary set and

f : S → (−∞,∞]. The problem is to minimize f over a (not necessarily proper)

subset C of S. At the nth step of a sequential unconstrained minimization algorithm,

we obtain xn by minimizing the function

Gn(x) = f(x) + gn(x), (34)

where the auxiliary function gn is appropriately chosen [12]. If C is a proper subset

of S we may force gn(x) = +∞ for x not in C, as in the barrier-function methods;

then each xn will lie in C.

The objective is to select the gn so that the sequence {xn} converges to a solution

of the problem, or failing that, at least to have the sequence {f(xn)} converging to

the infimum of f over x in C.

In [13] we presented a particular class of sequential unconstrained minimization

methods called SUMMA. As we showed in that paper, this class is broad enough

to contain barrier-function methods, proximal minimization methods, the entropic

proximal method of Teboulle [14], and the SMART. By reformulating the problem,

penalty-function methods can also be shown to be members of the SUMMA class.

When [13] was written, we were not able to include the EMML algorithm within the

SUMMA class. As we shall see shortly, any AM problem with the five-point property

can be reformulated as a SUMMA problem; therefore the EMML, which is such an

AM algorithm, must also be a SUMMA algorithm.

For a method to be in the SUMMA class we require that xn ∈ C, for each n, and

that each auxiliary function gn be finite for x ∈ C and satisfy the inequalities

0 ≤ gn+1(x) ≤ Gn(x)−Gn(xn), (35)

for all x. Note that it follows that gn+1(x
n) = 0, for all n. We assume that b :=

infx∈C f(x) > −∞. The next two results are taken from [13].
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Proposition 5.1 The sequence {f(xn)} is non-increasing and the sequence {gn(xn)}
converges to zero.

Theorem 5.1 The sequence {f(xn)} converges to b.

6 Examples of SUMMA

In this section we present several examples of SUMMA.

6.1 Barrier-Function Methods

Let b : RJ → (−∞,+∞] be a continuous function, with effective domain

D = {x| b(x) < +∞}.

The goal is to minimize the objective function f , over x in the closed set C = D, the

closure of D. In the barrier-function method, we

minimize f(x) +
1

n
b(x) (36)

over x to get xn. Each xn lies within D, so the method is an interior-point algorithm.

If the sequence {xn} converges, the limit vector x∗ will be in C and f(x∗) = f(x̂).

The iterative step of the barrier-function method can be formulated as follows:

minimize f(x) + [(n− 1)f(x) + b(x)] (37)

to get xn. Since, for n = 2, 3, ..., the function (n− 1)f + b is minimized by xn−1, the

function

gn(x) = (n− 1)f(x) + b(x)− (n− 1)f(xn−1)− b(xn−1) (38)

is non-negative, and xn minimizes the function Gn = f + gn. From

Gn(x) = f(x) + (n− 1)f(x) + b(x)− (n− 1)f(xn−1)− b(xn−1), (39)

it follows that

Gn(x)−Gn(xn) = nf(x) + b(x)− nf(xn)− b(xn) = gn+1(x), (40)

so that gn+1 satisfies the condition in (35). This shows that the barrier-function

method is a particular case of SUMMA.
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6.2 Penalty-Function Methods

Once again, we want to minimize f over x ∈ C. In penalty-function methods the nth

step is to minimize

f(x) + np(x), (41)

where p(x) > 0 for x not in C and p(x) = 0 for x ∈ C. To show that penalty-

function methods can be viewed as members of the SUMMA class, we reformulate

these methods as barrier-function methods. In order to relate penalty-function me-

thods to barrier-function methods, we note that minimizing f + np is equivalent to

minimizing p + 1
n
f . This is the form of the barrier-function iteration, with p now in

the role previously played by f , and f now in the role previously played by b. We are

not concerned here with the effective domain of f . See [13] for details.

6.3 Proximity-Function Minimization

Let f : RJ → (−∞,+∞] be proper, convex and differentiable. Let h be a proper,

closed, and convex function, with effective domain D, that is differentiable on the

nonempty open convex set int D. Assume that f is finite on C = D and attains its

minimum value on C at x̂. The corresponding Bregman distance Dh(x, z) is defined

for x in D and z in int D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (42)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then Dh(x, z) = 0

implies that x = z. Our objective is to minimize f over C = D.

At the nth step of the proximal minimization algorithm (PMA) [30, 16], we min-

imize the function

Gn(x) = f(x) +Dh(x, xn−1), (43)

to get xn. The function

gn(x) = Dh(x, xn−1) (44)

is non-negative and gn(xn−1) = 0. We assume that each xn lies in int D.

The PMA is a particular case of the SUMMA. We remind the reader that f is

now assumed to be convex and differentiable, so that the Bregman distance Df (x, z)

is defined and non-negative, for all x in D and z in intD.
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Lemma 6.1 For each n we have

Gn(x) = Gn(xn) +Df (x, xn) +Dh(x, xn). (45)

Proof: Since xn minimizes Gn within the set D, we have

0 = ∇f(xn) +∇h(xn)−∇h(xn−1). (46)

Then

Gn(x)−Gn(xn) = f(x)− f(xn) + h(x)− h(xn)− 〈∇h(xn−1), x− xn〉. (47)

Now substitute, using (46) and the definition of Bregman distances. �

It follows from Lemma 6.1 that

Gn(x)−Gn(xn) = gn+1(x) +Df (x, xn). (48)

7 AM as SUMMA

We show now that the SUMMA class of sequential unconstrained minimization algor-

ithms includes all the AM methods for which the five-point property holds.

7.1 Reformulating AM as SUMMA

For each p in the set P , Let f(p) = Θ(p, q(p)), where q(p) is a member of Q for which

Θ(p, q(p)) ≤ Θ(p, q), for all q ∈ Q.

At the nth step of AM we minimize

Gn(p) = Θ(p, qn−1) = Θ(p, q(p)) +
(

Θ(p, qn−1)−Θ(p, q(p))
)

(49)

to get pn. With

gn(p) =
(

Θ(p, qn−1)−Θ(p, q(p))
)
≥ 0, (50)

we can write

Gn(p) = f(p) + gn(p). (51)

According to the five-point property, we have

Gn(p)−Gn(pn) ≥ Θ(p, qn)−Θ(p, q(p)) = gn+1(p). (52)

It follows that AM is a member of the SUMMA class.

We have seen that both the SMART and the EMML can be obtained as AM

algorithms for which the five-point property holds. Consequently, both SMART and

EMML are particular cases of SUMMA.
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8 Conclusions

It was shown previously in [13] that the SUMMA class includes a wide variety of

optimization algorithms, including the barrier-function methods, the proximal minim-

ization algorithm of Censor and Zenios [15, 16], the entropic proximal method of

Teboulle [14], and the simultaneous multiplicative algebraic reconstruction technique

(SMART) [9, 10, 7, 8]. With some reformulation, it also contains the penalty-function

methods. We have now shown that the alternating minimization methods of [1]

are included in the SUMMA class whenever the five-point property holds. As a

consequence, we learn that the EMML algorithm for Poisson mixtures [3, 4, 5, 6, 7, 8]

is also a member of the SUMMA class.
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