
92.530 Applied Mathematics I: Solutions to
Homework Problems in Chapter 12

• 32: With v(x, y) = xF (2x + y), we have

vx = F (2x + y) + 2xF ′(2x + y),

and

vy = xF ′(2x + y).

Then

xvx − 2xvy = xF (2x + y) + 2x2F ′(2x + y)− 2x2F ′(2x + y) = xF (2x + y) = v.

If v(1, y) = y2, then

y2 = v(1, y) = F (2 + y),

or, substituting t = y + 2,

F (t) = (t− 2)2.

Therefore,

v(x, y) = xF (2x + y) = x(2x + y − 2)2.

• 34(a): We have

zx = ex(−3f ′(2y − 3x)) + exf(2y − 3x) = −3exf ′(2y − 3x) + z,

and

zy = ex(2f ′(2y − 3x)) = 2exf ′(2y − 3x).

Therefore,

2zx + 3zy = 2z.

• 35: From the equation for the string vibrating in the absence of gravity, we had

ytt = a2yxx,
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so the vertical force on the string at (x, t) is

mytt = ma2yxx.

When gravity is included, the additional vertical force is −mg. Therefore, the

total vertical force becomes

mytt = ma2yxx −mg,

so that

ytt = a2yxx − g.

• 41(a): We can write

xzxy + zy =
∂

∂y
(xzx + z) = 0,

so

xzx + z = f(x),

for some function of x only. But we also have

xzx + z =
∂

∂x
(xz),

so
∂

∂x
(xz) = f(x),

so that

xz = F (x) + G(y),

for F ′(x) = f(x).

• 46(a): We try solutions of the form

u(x, y) = f(x)g(y).

Inserting this u(x, y) into the partial differential equation, we obtain

3f ′(x)g(y) + 2f(x)g′(y) = 0,

or
3f ′(x)

f(x)
=
−2g′(y)

g(y)
,

which can happen only if there is some constant λ such that

3f ′(x)

f(x)
= λ,
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and
−2g′(y)

g(y)
= λ.

It follows that

f(x) = Aeλx/3,

and

g(y) = Be−λy/2.

So we have

u(x, y) = Ceλ((x/3)−(y/2)) = Cek(2x−3y),

so that

4e−x = u(x, 0) = Ce2kx,

from which we conclude that C = 4 and k = −1
2
. So the solution is

u(x, y) = 4e
1
2
(3y−2x).

• 53: This problem is similar to Problem 12.19. The partial differential equation

to be solved is

ytt = a2yxx,

with

y(0, t) = y(2, t) = 0,

for all t,

yt(x, 0) = 0,

and

y(x, 0) = f(x) = 0.03x(2− x),

for all x in the interval [0, 2].

We begin by seeking solutions of the form

y(x, t) = h(x)g(t).

Inserting this y(x, t) into the partial differential equation, we get

h(x)g′′(t) = a2h′′(x)g(t),

from which it follows that
g′′(t)

a2g(t)
= −λ2,
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and
h′′(x)

h(x)
= −λ2.

So we have

h(x) = A cos(λx) + B sin(λx),

and

g(t) = C cos(aλt) + D sin(aλt).

Now we use the constraints. Since we know that

y(0, t) = 0,

for all t, it follows that

h(0) = 0.

Then we must have

A cos(λ0) = 0,

or A = 0. Since

y(2, t) = 0,

for all t, we must also have

0 = h(2) = B sin(2λ).

We don’t want B = 0, since that would make h(x) = 0 for all x. So we select λ

so that sin(2λ) = 0; the possible choices are then

λ =
mπ

2
,

for any integer m. So far, we have found that the possible choices for h(x) have

the form

h(x) = Bm sin(
mxπ

2
),

for any integer m and constant Bm. From the constraint

yt(x, 0) = 0,

for all t, we have

0 = h(x)g′(0) = h(x)
(
− aλC sin(aλ0) + aλD cos(aλ0)

)
.

Therefore, D = 0. So we have the choices

y(x, t) = Km sin(
mxπ

2
) cos(

amtπ

2
),
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for arbitrary integer m and arbitrary constant Km. Finally, we want to satisfy

the constraint

y(x, 0) = f(x) = 0.03x(2− x).

Therefore, we want to find the Km so that

f(x) = 0.03x(2− x) =
∞∑

m=1

Km sin(
mxπ

2
).

We must then find the Fourier sine coefficients for this function. We have done

problems like this earlier, and I won’t repeat the calculation here.
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