
92.531 Applied Mathematics II: Solutions to
Homework Problems in Chapter 13

• 13.55 (a) Since |z + 2− 3i| = |z− (−2 + 3i)| = 5, we want all the points whose

distance from the point (−2 + 3i) is 5. This is a circle with radius 5, centered

at (−2 + 3i).

(b) Write z = x+yi, so that |z+2|2 = (x+2)2 +y2, and |z−1|2 = (x−1)2 +y2.

Then we have

(x + 2)2 + y2 = 4
(
(x− 1)2 + y2

)
,

or

x2 + 4x + 4 + y2 = 4
(
x2 − 2x + 1 + y2

)
,

so that

x2 + 4x + 4 + y2 = 4x2 − 8x + 4 + 4y2.

Then

0 = 3x2 − 12x + 3y2 = 3
(
x2 − 4x + 4) + 3y2 − 12,

so that

(x− 2)2 + y2 = 4,

which is a circle centered at (2, 0), with radius 2.

(c) Write

|z + 5| =
(
|z − 5|+ 6

)
and square to get

20x− 36 = 12
√

(x− 5)2 + y2.

Squaring both sides, we get

256x2 − 144y2 − (144)(16) = 0,

which reduces to
x2

9
− y2

16
= 1,
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which is a hyperbola. Notice that the original equation

|z + 5| − |z − 5| = |z − (−5)| − |z − (+5)| = 6

tells us that the z we want are farther from −5 than they are from +5, so we

want only the right half of the hyperbola, x ≥ 3.

• 13.56 (a) Use the fact that

4 ≤ |z − 2 + i| = |z − (2− i)|

to conclude that we want all z whose distance from the point 2 − i is greater

than or equal to 4, which is the boundary and exterior of a circle centered at

2− i, with radius 4. Using z = (x+ iy), this is equivalent to the set of all points

(x, y) with (x− 2)2 + (y + 1)2 ≥ 16.

(b) This is the segment of a circle of radius 3, centered at the origin, and

bounded by a radius in the positive x direction and a radius at the 45 degree

direction. Said another way, it is that part of the circular region x2 + y2 ≤ 9

bounded by the x-axis and the line y = x.

(c) An ellipse is the locus of points the sum of whose distances from two fixed

points, the focal points, is a constant. Therefore,

|z + 3|+ |z − 3| = |z − (−3)|+ |z − (+3)| = 10

is an ellipse with focal points (3, 0) and (−3, 0). The answer to the problem is

then the interior of this ellipse. To solve the problem algebraically, we write

(x + 3)2 + y2 =
(
10−

√
(x− 3)2 + y2

)2
,

so that

x2 + 6x + 9 + y2 = 100− 20
√

(x− 3)2 + y2 + x2 − 6x + 9 + y2.

Then we have

20
√

(x− 3)2 + y2 = 100− 12x.

Squaring both sides, we get

400
(
x2 − 6x + 9 + y2

)
= 10, 000− 2400x + 144x2,

or

256x2 + 400y2 = 10, 000− 3600 = 6400

or

16x2 + 25y2 = 400.
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• 13.57 (a) Use z3 = (x3 − 3xy2) + i(3x2y − y3).

(b) Let w = 3 + z, so that z
3+z

= w−3
w

= 1 − 3
w
. Then let w = a + ib, so that

1
w

= a−ib
a2+b2

.

(c) With z = x + iy, we have z2 = (x2 − y2) + 2xyi, so

ez2

= e(x2−y2)+2xyi = ex2−y2

e2xyi = ex2−y2
(

cos(2xy) + i sin(2xy)
)
.

Therefore,

ez2

= ex2−y2

cos(2xy) + iex2−y2

sin(2xy).

(d) We write z = x + iy, so that

1 + z = (x + 1) + iy =
√

(x + 1)2 + y2eiθ,

where tan θ = y
x+1

. Then

ln(1 + z) = ln
(√

(x + 1)2 + y2
)

+ i
(
θ + 2kπ

)
,

for any integer k.

• 13.60 (a) and (b) The calculation is the same as it would be for the real function

x + 1
x
, so the answer is 1− z−2, which is not defined at z = 0.

• 13.62 The function f(z) = x
√

x2 + y2 + iy
√

x2 + y2, and the Cauchy-Riemann

equation uy = −vx fails.

• 13.64 Let the analytic function be f(z) = f(x+ iy) = R(x, y) + iI(x, y), where

R(x, y) and I(x, y) denote the real and imaginary parts of f(z), respectively.

We are given that I(x, y) = 2x(1 − y). Taking its partial derivatives, we find

that ∂I
∂x

= 2(1− y), and ∂I
∂y

= −2x. The Cauchy-Riemann equations tell us that

∂R

∂x
=

∂I

∂y
= −2x,

and
∂R

∂y
= −∂I

∂x
= 2(y − 1).

From
∂R

∂x
= −2x,

it follows that R(x, y) = −x2 + g(y) + c, for some real function g(y) and real

scalar c. From
∂R

∂y
= 2(y − 1)
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it follows that g′(y) = 2y − 2. Therefore, we know that g(y) = y2 − 2y.

(a) Putting it all together, we get

R(x, y) = −x2 + y2 − 2y + c.

(b) Then we have

f(z) = −x2 + y2 − 2y + c + i(2x(1− y)).

Substitute

x =
z + z

2
,

and

y =
z − z

2i

to get

f(z) = 2iz − z2 + c.

• 13.65 The problem is incorrectly stated. The real part of f(z) should read

R(x, y) = e−x(x cos y + y sin y) + 1.

Then its first partial derivatives are

Rx(x, y) = −e−x(x cos y + y sin y) + e−x(cos y) = e−x((1− x) cos y − y sin y),

and

Ry(x, y) = e−x(−x sin y + y cos y + sin y).

By the Cauchy-Riemann equations,

Iy(x, y) = Rx(x, y) = e−x((1− x) cos y − y sin y),

and

Ix(x, y) = −Ry(x, y) = e−x(x sin y−y cos y−sin y) =
∂

∂x

(
e−x(y cos y−x sin y)

)
.

Integrating with respect to x, we get

I(x, y) = e−x(y cos y − x sin y) + g(y) + c.

Taking the y partial, we get

Iy(x, y) = e−x(cos y−y sin y−x cos y)+g′(y) = e−x((1−x) cos y−y sin y)+g′(y).
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But we also know that

Iy(x, y) = e−x((1− x) cos y − y sin y),

from which we conclude that g′(y) = 0, so that g(y) = d, for some constant d.

Therefore, we have

I(x, y) = e−x(y cos y − x sin y) + k,

for some scalar k. So we have

f(z) = f(x + iy) = e−x(x cos y + y sin y) + 1 + i[e−x(y cos y − x sin y) + k].

From f(0) = 1, we find that k = 0. To put the function is terms of z, we note

that e−x(cos y − i sin y) = e−z, so that

e−zz = e−x(cos y−i sin y)(x+iy) = e−x(x cos y+y sin y)+i[e−x(y cos y−x sin y)].

Therefore, f(z) = ze−z + 1.

• 13.69 Since 2z + 3 is an analytic function, the integrals depend only on the

end-points. An anti-derivative of 2z + 3 is F (z) = z2 + 3z, so the integrals all

have the value

F (3 + i)− F (1− 2i) = (3 + i)2 + 3(3 + i)− (1− 2i)2 − 3(1− 2i) = 17 + 19i.

In each of the integrals we have z = x + iy, so that

dz =
dz

dt
dt = (

dx

dt
+ i

dy

dt
)dt.

(a) Since x(t) = 2t + 1, we have x′(t) = 2. Since y(t) = 4t2 − t − 2, we have

y′(t) = 8t− 1. Therefore,

dz = (2 + i(8t− 1))dt.

Then we have ∫ 3+i

1−2i
2z + 3dz =

∫ 1

0
(2x + 3 + 2iy)(2 + i(8t− 1))dt

=
∫ 1

0
(2(2t + 1) + 3 + 2i(4t2 − t− 2))(2 + i(8t− 1))dt

=
∫ 1

0
(−64t3 + 24t2 + 38t + 6) + i(48t2 + 32t− 13)dt = 17 + 19i.

The other two parts of the problem are similar.
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• 13.79 In (a) the denominator has a root at z = −1
2

that is repeated four times,

and this is not a root of the numerator, so we have a pole of order four. In (b)

the denominator has a single root at z = 1 and a double root at z = −2, and

neither is a root of the numerator, so z = 1 is a simple pole, while z = −2 is

a pole of order two. In (c), apply the quadratic formula to the denominator to

get the roots z = −1 + i and z = −1− i. Neither is a root of the numerator, so

they are simple poles. In (d), we write

cos(
1

z
) = 1− 1

2
z−2 +

1

24
z−4 − ...

and find that there are infinitely many negative powers of z involved. Therefore,

z = 0 is an essential singularity. In (e), we expand the sine function in the

numerator, to get

sin(z − π

3
) = (z − π

3
)− 1

6
(z − π

3
)3 +

1

120
(z − π

3
)5 − ...,

so that, dividing by the denominator, we are left with

1

3

(
1− 1

6
(z − π

3
)2 +

1

120
(z − π

3
)4 − ...

)
.

This function is analytic everywhere, so the apparent singularity at z = π
3

is

removable. Finally, in (f), the denominator has double roots at z = 2i and

z = −2i. These are not roots of the numerator, so both of them are double

poles.

• 13.83 (a) The poles are z = 2 and z = −2. For the pole at z = 2 we let t = z−2

and write
2z + 3

z + 2
=

2t + 7

t + 4
=

7

4
+

1

16
t + ...,

so that, when we multiply by t−1, the coefficient of the power t−1 is 7
4
, which is

the residue. For the pole at z = −2, we let t = z + 2, so that

2z + 3

z − 2
=

2t− 1

t− 4
=

1

4
+

7

4
t + ....

When we divide by t−1 the coefficient of t−1 becomes 1
4
, which is the residue.

(b) There is a double pole at z = 0 and a simple pole at z = −5. For the pole

at z = −5, we set t = z + 5, so that

z − 3

z2
=

t− 8

(t− 5)2
=

t− 8

t2 − 10t + 25
=
−8

25
+
−11

125
t + ....
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When we multiply by t−1 the coefficient of t−1 becomes −8
25

, which is the residue.

For the double pole at z = 0, we write

z − 3

z + 5
= −3

5
+

8

25
z − 8

125
z2 + ....

When we multiply by z−2, the coefficient of the power z−1 becomes 8
25

, which

is the residue.

For (c), we have a triple pole at z = 2. Since the letter t is already in use, we

set u = z − 2, and write

ezt = e(u+2)t = e2teut = e2t[1 + tu +
1

2
t2u2 + ...].

When we multiply by u−3 the coefficient of u−1 is e2t t2

2
, which is the residue.

For (d), we have double poles at z = i and z = −i. For the pole at z = i, we

let t = z − i, so that

z

(z + i)2
=

t + i

(t + 2i)2
=

t + i

t2 + 4it− 4
,

which we expand as

− i

4
− i

16
t2 + ....

When we multiply by t−2, the coefficient of t−1 is zero, which is the residue.

The calculations for the pole at z = −i are similar.

• 13.86 To get the residue at z = i we differentiate the function zetz/(z + i)2 to

get (
(z + i)2(ztetz + etz)− 2zetz(z + i)

)
/(z + i)4.

Taking the limit as z → i, we get the residue at z = i, which is

−it

4
eit.

Similarly, the residue at z = −i is it
4
e−it. The sum of these two residues is

t
2
sin t. To get the integral, we must multiply this by 2πi.

• 13.88 We consider the integral of the function

f(z) =
z2

z4 + 1
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around the contour consisting of the interval [−R,R], followed by the upper

semi-circle centered at the origin, with radius R. As R →∞, the integral over

the semi-circle will go to zero, leaving us with the integral∫ ∞

−∞

x2

x4 + 1
dx,

which is twice the integral in the problem.

Inside this contour, there are two poles,

z = u =

√
2

2
+

√
2

2
i

and

z = v = −
√

2

2
+

√
2

2
i.

The denominator factors as

z4 + 1 = (z + u)(z − u)(z + v)(z − v).

We calculate the residue at z = u. We have

z2

(z + u)(z + v)(z − v)
=

z2

(z + u)(z2 + i)
=

z2

z3 + uz2 + iz + iu
.

We substitute t = z − u, or z = t + u, to get

(t + u)2

(t + u)3 + u(t + u)2 + i(t + u) + iu
.

This is an analytic function in a neighborhood of z = u, and can be expanded as

a Taylor series with respect to the variable t; we want the constant term, since

that term will be the coefficient of t−1 when we multiply by (z − u)−1 = t−1.

The constant term is easily seen to be 1/4u, which is the residue at z = u. The

residue at z = v, which is 1/4v, is found in similar fashion. The sum of these

residues is
1

4u
+

1

4v
= −

√
2

4
i.

The integral around the contour is then

(2πi)(−
√

2

4
i) =

√
2π

2
.

The desired answer is half of this, or
√

2π

4
=

π

2
√

2
.
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