92.531 Applied Mathematics II: Solutions to
Homework Problems in Chapter 13

e 13.55 (a) Since |z +2—3i| = |z — (=2 + 3i)| = 5, we want all the points whose
distance from the point (—2 + 3i¢) is 5. This is a circle with radius 5, centered
at (—2+ 39).

(b) Write 2 = z+yi, so that |z +2|* = (z+2)?+4?, and |z —1]* = (z—1)*+ >
Then we have
(2 +22 +¢* =4((z — 1)’ +4),

or
x2+4x+4—|—y2:4(332—293+1+y2),
so that
2? + 4 + 4+ y7 =42 — 8w + 4+ 4y”.
Then
0:3$2—12$+33/2=3(x2—4x+4)+3y2—12,
so that

(x =2 +y* =4,
which is a circle centered at (2,0), with radius 2.

(c) Write
|z + 5] = (]z—5]+6)

and square to get
20z — 36 = 121/(z — 5)2 + y2.

Squaring both sides, we get
2562 — 144y* — (144)(16) = 0,

which reduces to )
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which is a hyperbola. Notice that the original equation
|2+5] = [z =5] = [z = (=5)| = |z = (+5)| = 6
tells us that the z we want are farther from —5 than they are from +5, so we
want only the right half of the hyperbola, x > 3.
13.56 (a) Use the fact that
4<|z=2+1i|=|z—(2—1)|

to conclude that we want all z whose distance from the point 2 — i is greater
than or equal to 4, which is the boundary and exterior of a circle centered at
2 — i, with radius 4. Using z = (x +iy), this is equivalent to the set of all points
(z,y) with (z —2)*+ (y + 1)* > 16.

(b) This is the segment of a circle of radius 3, centered at the origin, and
bounded by a radius in the positive = direction and a radius at the 45 degree
direction. Said another way, it is that part of the circular region 2% + y? < 9

bounded by the z-axis and the line y = x.

(c) An ellipse is the locus of points the sum of whose distances from two fixed

points, the focal points, is a constant. Therefore,
lz+3|+]z=3|=|z—(=3)|+ |z — (+3)| =10

is an ellipse with focal points (3,0) and (—3,0). The answer to the problem is
then the interior of this ellipse. To solve the problem algebraically, we write
2
(z+3)2+y° = (10— (x—3)2+y2) ,
so that

2% 4+ 62+ 94 9% = 100 — 201/ (2 — 3)2 4+ 42 + 2° — 62 + 9 + 3/°.

204/ (z — 3)? + y? = 100 — 12z.

Squaring both sides, we get

Then we have

400(2? — 62 + 9+ y?) = 10,000 — 2400z + 14427,

or
25622 + 400y* = 10, 000 — 3600 = 6400

or
1622 4 25y = 400.



e 13.57 (a) Use 2% = (z® — 3xy?) +i(32%y — ).

(b) Let w = 3+ 2, so that ;% = “=2 =1 — 2. Then let w = a + ib, so that

1 _ a—ib
w  a?4b?"

(c) With z = = + iy, we have 22 = (22 — y?) + 2zyi, so

622 — e(x2—y2)+2xyi _ ex2—y262xyi _ 6x2_y2<COS(2£L'y) n isin(23:y)).

Therefore,

e = e cos(2ay) +ie” Y sin(2zy).

(d) We write z = = + iy, so that

14z=(z+1)+iy = /(z+1)2 + y2e?,
Y

where tan§ = o Then

In(l+z2)=1In ( (x+1)2+ y2) + i(@ + 2k:7r),
for any integer k.

e 13.60 (a) and (b) The calculation is the same as it would be for the real function

T+ %, so the answer is 1 — 272, which is not defined at z = 0.

e 13.62 The function f(z) = xv/z? + y? +iyv/x? + 42, and the Cauchy-Riemann

equation u, = —v, fails.

e 13.64 Let the analytic function be f(z) = f(z +iy) = R(z,y) +il(x,y), where
R(z,y) and I(z,y) denote the real and imaginary parts of f(z), respectively.
We are given that I(x,y) = 2z(1 — y). Taking its partial derivatives, we find
that 9 = 2(1—y), and g—; = —2z. The Cauchy-Riemann equations tell us that

a—R—g——Qx
oxr Oy ’
and OR oI
T D oy —1).
3y 5y~ 2w —1)
From
a—R——2:c
or ’

it follows that R(z,y) = —2? + g(y) + ¢, for some real function g(y) and real

scalar ¢. From
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it follows that ¢'(y) = 2y — 2. Therefore, we know that g(y) = y? — 2y.
(a) Putting it all together, we get

R(z,y) = =" +¢y* = 2y + c.

(b) Then we have
fz) = =2® + % = 2y + c +i(2x(1 - y)).

Substitute

z+Z
x =
2 )
and
2 z
Y= 79
to get
f(z) =2iz —2* +c.

e 13.65 The problem is incorrectly stated. The real part of f(z) should read

R(xz,y) = e “(xcosy +ysiny) + 1.

Then its first partial derivatives are

R.(z,y) = —e *(zcosy + ysiny) + e “(cosy) = e “((1 — x) cosy — ysiny),
and
Ry(x,y) = e *(—xsiny + ycosy + siny).
By the Cauchy-Riemann equations,

I,(2,y) = Ru(w,y) = e*((1 - 2) cosy — ysiny),

and
I(z,y) = —Ry(z,y) = e “(rsiny—ycosy—siny) = i(e_m(ycosy—xsiny)).
x

Integrating with respect to z, we get

I(z,y) = e *(ycosy —xsiny) + g(y) + c.

Taking the y partial, we get
Iy(z,y) = e *(cosy—ysiny—zcosy)+g'(y) = e " ((1-x) cosy—ysiny)+4'(y)
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But we also know that

I,(2,y) = ¢ (1 - 2) cosy — ysiny),

from which we conclude that ¢'(y) = 0, so that g(y) = d, for some constant d.

Therefore, we have
I(x,y) = e “(ycosy — xsiny) + k,
for some scalar k. So we have
f(z)= f(x+iy) =e “(rcosy +ysiny) + 1+ ife " (ycosy — xsiny) + k.

From f(0) = 1, we find that £ = 0. To put the function is terms of z, we note
that e=*(cosy —isiny) = e~ *, so that

ez =e "(cosy—isiny)(z+iy) = e *(x cosy+ysiny)+ife " (y cosy—xsiny)].
Therefore, f(z) = ze % + 1.

13.69 Since 2z + 3 is an analytic function, the integrals depend only on the
end-points. An anti-derivative of 2z + 3 is F/(z) = 2% + 3z, so the integrals all

have the value
F(3+14)—F(1—2i)=3+i)”+303+i)— (1 —2)*—3(1 —2i) =17 + 19.

In each of the integrals we have z = x + 4y, so that

dz de .dy

a) Since z(t) = 2t + 1, we have 2/(t) = 2. Since y(t) = 4t> — t — 2, we have
y'(t) = 8t — 1. Therefore,

dz = (24 (8 — 1))dt.
Then we have

341 1
/ 22+ 3dz :/ (20 + 3+ 2iy)(2 + i(8t — 1))dt
1 0

_ /01(2(275 T 1) 3 2047 — — 2))(2 4 i(8t — 1))dt

1
= / (—6413 + 241> 4 38t + 6) 4 9(48t% 4+ 32t — 13)dt = 17 + 19i.
0

The other two parts of the problem are similar.
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e 13.79 In (a) the denominator has a root at z = —% that is repeated four times,
and this is not a root of the numerator, so we have a pole of order four. In (b)
the denominator has a single root at z = 1 and a double root at z = —2, and
neither is a root of the numerator, so z = 1 is a simple pole, while z = —2 is
a pole of order two. In (c), apply the quadratic formula to the denominator to
get the roots 2 = —1+7¢ and z = —1 — i. Neither is a root of the numerator, so
they are simple poles. In (d), we write

1 1 5, 1 .

-)=1- —z = ..
COS(Z) 5% +24z

and find that there are infinitely many negative powers of z involved. Therefore,
z = 0 is an essential singularity. In (e), we expand the sine function in the

numerator, to get

T 1 T 1 T

sin(z — %) =(z— 5) - 6(2 - 5)3 + ﬁ(z - 5)5 -

so that, dividing by the denominator, we are left with

1 1 T o 1 T4
—(1——(2—§) +1—20(2—§) —)

This function is analytic everywhere, so the apparent singularity at z = % is
removable. Finally, in (f), the denominator has double roots at z = 2i and
z = —2i. These are not roots of the numerator, so both of them are double

poles.

e 13.83 (a) The poles are z = 2 and z = —2. For the pole at z =2 we let t = z2—2
and write
2243 _ 2047 :Z—i—it—f—...,
z+2 t+4 4 16
so that, when we multiply by ¢!, the coefficient of the power ¢! is T, which is

40
the residue. For the pole at z = —2, we let t = 2 4+ 2, so that

2z—|—3_2t—1_1+zt+
2—2 t—4 4 4 7

When we divide by t~! the coefficient of ! becomes i, which is the residue.

(b) There is a double pole at z = 0 and a simple pole at z = —5. For the pole
at z = =5, we set t = z + 5, so that
z—3 t—38 t—38 -8 —11

= = =—+ —1t+....
22 (t—5)2 2—-10t+25 25 * 125 *




=8

5=, which is the residue,

When we multiply by ¢! the coefficient of ! becomes

For the double pole at z = 0, we write

:-3_ 3.8 8 o
=—+ —z——2"+ ..
245 5 257 125

When we multiply by 272, the coefficient of the power z~! becomes 28—5, which

is the residue.

For (c), we have a triple pole at z = 2. Since the letter ¢ is already in use, we

set u = z — 2, and write
2t (u+2)t 2t ut 2t 1 2,2
e =e =e“e" =e [1+tu+§tu + ...

When we multiply by v =3 the coefficient of u=! is th% which is the residue.

For (d), we have double poles at z = ¢ and z = —i. For the pole at z = i, we
let t = z — i, so that

z t+1 t+1

(z+1)2  (t+20)2 2+4it—4

WhiCh we expand as
) 1 2
4 16

When we multiply by ¢72, the coefficient of t~! is zero, which is the residue.

The calculations for the pole at z = —¢ are similar.

e 13.86 To get the residue at z = ¢ we differentiate the function ze'*/(z + )% to
get
((z+0)2(ste’ + €) — 22¢" (2 +1) ) /(= + )"

Taking the limit as z — 7, we get the residue at z = i, which is

4

Similarly, the residue at z = —i is %e‘“. The sum of these two residues is

%sint. To get the integral, we must multiply this by 2ms.

e 13.88 We consider the integral of the function

22

2441

f(z) =



around the contour consisting of the interval [—R, R], followed by the upper
semi-circle centered at the origin, with radius R. As R — oo, the integral over
the semi-circle will go to zero, leaving us with the integral
o g2
[t
which is twice the integral in the problem.

Inside this contour, there are two poles,

and

The denominator factors as
A rl=(z4+u)(z—u)(z+v)(z - ).

We calculate the residue at z = u. We have

22 22 22

(z+u)(z+v)(z—v) (z+u)(22+1i) 23 +uz2+iz+iu

We substitute t = z —u, or z =t + u, to get

(t + u)?
(t+u)® +ult+u)?+i(t +u) +iu

This is an analytic function in a neighborhood of z = u, and can be expanded as
a Taylor series with respect to the variable ¢; we want the constant term, since
that term will be the coefficient of t~! when we multiply by (z —u)™! = ¢t71.
The constant term is easily seen to be 1/4u, which is the residue at z = u. The
residue at z = v, which is 1/4v, is found in similar fashion. The sum of these
1 1 2
%+@:‘f”
The integral around the contour is then

residues is



