
92.530 Applied Mathematics I: Solutions to
Homework Problems in Chapter 15

• 49. We need to solve the system[
2 −1
−3 4

] [
x
y

]
=

[−8
−1

]
.

The inverse of the 2 by 2 matrix [
2 −1
−3 4

]
is

1

5

[
4 1
3 2

]
,

so [
x
y

]
=

1

5

[
4 1
3 2

] [−8
−1

]
=

[−33/5
−26/5

]
.

• 50: Take

A =
[
1 0
1 0

]
,

and

B =
[
0 0
1 1

]
.

It is also possible for non-square matrices; take

A = [ 1 0 ] ,

and

B =
[
0
1

]
.

• 51: Note that with

A =
[
1 0
0 0

]
,

we have [
1 0
0 0

] [
a b
c d

]
=

[
a b
0 0

]
,

so c and d can be anything.
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• 55: The point (1, 0) in the (x′, y′) system is the point (cos θ, sin θ) in the original

system, and the point (0, 1) in the (x′, y′) system is the point (− sin θ, cos θ) in

the original system. Therefore, the point

(x′, y′) = x′(1, 0) + y′(0, 1)

in the (x′, y′) system is the point

(x, y) = (x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ)

in the original system. Therefore, the point (x′, y′) in the second system is the

point (x, y) in the original system, where[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x′

y′

]
.

Therefore, using the formula for the inverse of a 2 by 2 matrix, we get[
x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
.

Note that the book is incorrect on this point. Also, the assertion in part (b) is

wrong.

• 59: (a) The matrix A is

A =
[

4 −3
−3 3

]
.

(b) The matrix A is

A =

 1 1 −3
1 −2 2
−3 2 4

 .

• 60: Denote by A† the conjugate transform of A, that is,

A† = A
T
.

(a) If A† = A, the complex conjugate of the number X†AX is

(X†AX)† = X†A†(X†)† = X†AX,

so the number X†AX must be a real number. (b) On the other hand, we see,

by a similar argument, that if A† = −A then the complex conjugate of X†AX

is its negative, so X†AX must be purely imaginary or zero.

• 61: Let A = 1
2
(C + C†) and B = 1

2
(C − C†.
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• 87: First, find (x, y, z) so that

2x− 3y + z = 0,

and

−2x− y + z = 0.

The second equation tells us that

z = 2x + y.

Inserting this into the first equation, we find

0 = 2x− 3y + 2x + y = 4x− 2y,

or y = 2x. Therefore, z = 4x. The vectors (x, 2x, 4x) are then orthogonal to

both of the other two given vectors. To make this vector a unit vector, we want

its length squared, which is 21x2, to be one, or x = 1/
√

21.

• 93: For example, the second equation tells us that

x3 = −1− 2x1 + 3x2.

Inserting this into the first equation, we get

2 = 3x1 + 2x2 − 4(−1− 2x1 + 3x2) = 11x1 − 10x2 + 4,

so that

x2 = (11x1 + 2)/10.

It follows that

x3 = −1− 2x1 + 3((11x1 + 2)/10).

So we have both x2 and x3 in terms of x1. Selecting any value for x1 gives us a

solution.

• 96(a): We begin by taking the determinant of the matrix A − λI, where A is

the matrix

A =
[

2 2
−1 5

]
.

Then

det
[
2− λ 2
−1 5− λ

]
= λ2 − 7λ + 12 = (λ− 4)(λ− 3).

Therefore, the eigenvalues are λ = 3 and λ = 4.
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• 98: If λ is an eigenvalue of the matrix A, then there is a non-zero vector u with

Au = λu. Then we also have

A2u = A(Au) = A(λu) = λ(Au) = λ(λu) = λ2u.

More generally, Anu = λnu, for any positive integer n. If A is invertible, then

no eigenvalue of A can be zero, and we also have A−1u = λ−1u, as well as

Anu = λnu, for any integer n.

• 99 Suppose that the matrix A is skew-Hermitian, so that A† = −A. Then

consider the equation Au = λu, from which we can write

u†Au = λu†u.

From Problem 15.58(c), we know that the quadratic form u†Au is purely imag-

inary or zero. Since u†u > 0, it follows that λ is purely imaginary or zero.

• 107: (a) We want to use Theorem 15-16. The quadratic form x2 + xy + y2 can

be written as

x2 + xy + y2 = [ x y ]
[
1 1

2
1
2

1

] [
x
y

]
= XT AX,

for A the symmetric matrix

A =
[
1 1

2
1
2

1

]
and

X = [x, y]T .

The matrix A has eigenvalues λ1 = 3
2

and λ2 = 1
2
, with associated normalized

eigenvectors

u1 = [
1√
2
,

1√
2
]T

and

u2 = [
−1√

2
,

1√
2
]T ,

respectively. Let U be the matrix with u1 as its first column and u2 as its second

column. Then U−1 = UT and Theorem 15-16 simplifies quite a bit. Let L be

the diagonal matrix with the entries λ1 and λ2 on the main diagonal. Then

AU = UL, and A = ULUT . The quadratic form XT AX is then

XT AX = XT (ULUT )X = (L1/2UT X)T (L1/2UT X).
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Therefore, we take

X ′ = [x′, y′]T = L1/2UT X,

so that

x′ =

√
3

2
(x + y),

and

y′ =
1

2
(−x + y).

(b) The matrix U is

U =

[ 1√
2

1√
2

1√
2

−1√
2

]
,

so U has the form

U =
[

cos θ sin θ
− sin θ cos θ

]
for θ = π

4
. This corresponds to a rotation of the axes through an angle of −π

4
.

Then the multiplication by

L1/2 =

 √
3
2

0

0
√

1
2


means that the unit length along each of the new coordinate axes is rescaled.

The overall effect is to turn a circle into an ellipse with its major axis along the

line y = x.

• 108: Suppose we want to maximize or minimize the function f(x, y) given by

f(x, y) = x2 + y2,

subject to the condition

g(x, y) = x2 + xy + y2 = 16.

The method of using Lagrange multipliers involves setting to zero the first

partial derivatives of the Lagrangian function

L(x, y; α) = f(x, y) + αg(x, y).

Then we have

0 = Lx(x, y; α) = 2x + 2αx + αy,

and

0 = Ly(x, y; α) = 2y + 2αy + αx.
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Using λ = −1/α, we can write these equations as

λx = x +
1

2
y,

and

λy =
1

2
x + y,

so that [
1 1

2
1
2

1

] [
x
y

]
= λ

[
x
y

]
.

Therefore, the solution vector X = [x, y]T is an eigenvector of the matrix

A =
[
1 1

2
1
2

1

]
.

From

16 = x2 + xy + y2 = XT AX = λXT X = λ(x2 + y2),

we find that the corresponding values of f(x, y) are 16/λ, for the two eigenvalues

of A, λ1 = 3
2

and λ2 = 1
2
. Choosing λ1 gives the minimum value of f(x, y), and

choosing λ2 gives the maximum value.
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