92.530 Applied Mathematics I: Solutions to
Homework Problems in Chapter 15

e 49. We need to solve the system

{2 17 [z _[—8}
-3 4 ]lyl [-1]"
The inverse of the 2 by 2 matrix
=
-3 4
1s
s o]
513 2]7
SO
=5 ls o] (5] [5
yl 513 2][-1]  [-26/5]"
e 50: Take Lo
A:[l 0]’
and

It is also possible for non-square matrices; take

A=[1 0],
and
0
=]
e 51: Note that with
A—[l O]
0 0]

we have

so ¢ and d can be anything.



55: The point (1,0) in the (2/,y') system is the point (cos, sin @) in the original
system, and the point (0,1) in the (2/,y’) system is the point (—siné,cos#) in

the original system. Therefore, the point
(«',y) = 2'(1,0) +4/(0,1)
in the (2/,y') system is the point
(z,y) = (2" cos§ — 3/ sin 6, 2" sin 6 + y' cos 0)

in the original system. Therefore, the point (2,%’) in the second system is the

x/
[y’
Therefore, using the formula for the inverse of a 2 by 2 matrix, we get

[x’} B { cosf Sine} [x]
y' ] |—sinf cosO|y]’

Note that the book is incorrect on this point. Also, the assertion in part (b) is

point (z,y) in the original system, where

[;1:] _ {cos@ —sinf

y sinf  cosf

wrong.

59: (a) The matrix A is

4 =3
=5 5
(b) The matrix A is
1 1 -3
A=|11 =2 2
-3 2 4

60: Denote by A the conjugate transform of A, that is,
At =2a",
(a) If AT = A, the complex conjugate of the number XTAX is
(XTAX) = XTAT(XT)T = XTAX,

so the number XTAX must be a real number. (b) On the other hand, we see,
by a similar argument, that if AT = —A then the complex conjugate of XTAX

is its negative, so XTAX must be purely imaginary or zero.
61: Let A= 3(C+C") and B = 1(C —C".
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e 87: First, find (z,vy, z) so that
20 =3y + 2 =0,
and
—2z—-y+2z=0.

The second equation tells us that
z=2x+y.
Inserting this into the first equation, we find
0=2z—3y+2x+y=4x — 2y,

or y = 2z. Therefore, z = 4z. The vectors (z,2z,4x) are then orthogonal to
both of the other two given vectors. To make this vector a unit vector, we want
its length squared, which is 2122, to be one, or z = 1/v/21.

e 93: For example, the second equation tells us that
T3 = —1— 221 4+ 3x5.
Inserting this into the first equation, we get
2 =311+ 2wy — 4(—1 — 22 + 3x9) = 112y — 1025 + 4,
so that

2y = (112 + 2)/10.

It follows that
x3 = —1—2x; + 3((11x; + 2)/10).

So we have both x5 and x3 in terms of ;. Selecting any value for x; gives us a

solution.

e 96(a): We begin by taking the determinant of the matrix A — AI, where A is
the matrix
-1 5

A:{Z 2}.

Then
2— )\ 2
-1 5-=A

Therefore, the eigenvalues are A = 3 and A = 4.

det[ }:A2—7>\+12:()\—4)(A—3).
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e 98: If ) is an eigenvalue of the matrix A, then there is a non-zero vector u with

Au = Mu. Then we also have
A?u = A(Au) = A(\u) = MAu) = A Au) = Nau.

More generally, A"u = A"u, for any positive integer n. If A is invertible, then
no eigenvalue of A can be zero, and we also have A7'u = A\ 'u, as well as

A"u = A\"u, for any integer n.

e 99 Suppose that the matrix A is skew-Hermitian, so that AT = —A. Then

consider the equation Au = Au, from which we can write
u Au = \ulw.

From Problem 15.58(c), we know that the quadratic form u'Au is purely imag-

inary or zero. Since ufu > 0, it follows that A is purely imaginary or zero.

e 107: (a) We want to use Theorem 15-16. The quadratic form z? + zy + y* can

be written as

1
oy +yt=[x y]“ i]{ﬂ:XTAX,
5 Yy
for A the symmetric matrix ,
1 £
=]y il
5 1
and
X = [z,9)".
The matrix A has eigenvalues \; = % and Ay = %, with associated normalized
eigenvectors
1 1
1 T
u=[—,—
[ 7 2]
and -
u? = [; 7]T

respectively. Let U be the matrix with u! as its first column and u? as its second
column. Then U~! = UT and Theorem 15-16 simplifies quite a bit. Let L be
the diagonal matrix with the entries A\; and Ay on the main diagonal. Then
AU = UL, and A = ULU". The quadratic form X7 AX is then

XTAX = XT(ULUNX = (LV*UT X)Y(LV2UTX).



Therefore, we take

so that /3
3
o’ = 7(m+y),
and
y = (o +)
(b) The matrix U is
11
U= [ﬁ “ﬂ
V2 V2
so U has the form
U { cosf sinQ]
| —sinf cosé

for = g.

Then the multiplication by

This corresponds to a rotation of the axes through an angle of —7.

712 _ [\/3 0 ]

0 /3

means that the unit length along each of the new coordinate axes is rescaled.
The overall effect is to turn a circle into an ellipse with its major axis along the

line y = .
108: Suppose we want to maximize or minimize the function f(x,y) given by
fla,y) =2° + ¢,
subject to the condition
g(x,y) = 2+ zy +y° = 16,

The method of using Lagrange multipliers involves setting to zero the first

partial derivatives of the Lagrangian function

L(z,y;a) = f(x,y) + ag(z,y).

Then we have
0= Ly(z,y; ) = 2z + 20 + vy,

and
0= Ly(z,y;a) = 2y + 2ay + aux.
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Using A = —1/«, we can write these equations as

and

so that

Therefore, the solution vector X = [z, ]

From

1
Ar = =
rT=x+ 2y,
A ! +
=—x
) B Y
1
5 T —\ T
LIty Y
T is an eigenvector of the matrix
1 1L
A - |: 1 2 :| .
5 1

16 = 2% + 2y + y* = XTAX = AXTX = Aa? + ¢?),

we find that the corresponding values of f(z,y) are 16/, for the two eigenvalues

of A, Ay = 2 and A\, = . Choosing ), gives the minimum value of f(z,y), and

choosing A\, gives the maximum value.



