
92.530 Applied Mathematics I: Solutions to
Homework Problems in Chapter 1

• 1.70 The first two parts follow immediately from the definitions. (c): We have
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• 1.130 We have

∂f

∂x
= 2x tan−1
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x
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x
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.

Therefore,

x
∂f
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∂y
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• 1.131 We calculate ∂V
∂x

and ∂2V
∂x2

; the others are similar. We have

∂V

∂x
=
−1

2
(x2 + y2 + z2)−3/2(2x) = −x(x2 + y2 + z2)−3/2,

and
∂2V

∂x2
= −(x2 + y2 + z2)−3/2 + 3x2(x2 + y2 + z2)−5/2.

The other two second partial derivatives are similar. Their sum is zero.

• 1.134 We have
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y
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x
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• 1.135 We calculate the right side of the equation and show that it equals the

left side. For simplicity denote cosφ by c, and sinφ by s.

uρ = uxxρ + uyyρ = uxc+ uys.

Then, because

cρ = sρ = 0,

we have

uρρ = uxρc+ uyρs = (uxxc+ uxys)c+ (uyxc+ uyys)s.

Also,

uφ = uxxφ + uyyφ = ux(−ρs) + uy(ρc).

So,

uφφ = (−ρux)c+ (−ρux)φs− (ρuy)s+ (ρuy)φc

= −ρuxc− ρ(uxxxφ + uxyyφ)s

−ρuys+ ρ(uyxxφ + uyyyφ)c.

Therefore, we have

uφφ = −ρ(uxc+ uys) + ρ2s2uxx − 2ρ2csuxy + ρ2c2uyy.

Therefore, we have

uρρ = c2uxx + 2csuxy + s2uyy,

1

ρ
uρ =

1

ρ
(cux + suy),

and
1

ρ2
uφφ = −1

ρ
(cux + suy) + s2uxx − 2csuxy + c2uyy.

Using c2 + s2 = 1, it follows easily that

uρρ +
1

ρ
uρ +

1

ρ2
uφφ = uxx + uyy.
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• 1.137 For f(x, y, z) = xz + y2, we have

∂f

∂x
= z,

∂f

∂y
= 2y,

∂f

∂z
= x,

∂2f

∂z∂x
= 1,

∂2f

∂y2
= 2,

∂2f

∂x∂z
= 1,

and all others are zero. At the point (1,−1, 2) we have

f(1,−1, 2) = 3,

∂f

∂x
(1,−1, 2) = 2,

∂f

∂y
(1,−1, 2) = −2,

∂f

∂z
(1,−1, 2) = 1,

∂2f

∂z∂x
(1,−1, 2) = 1,

∂2f

∂y2
(1,−1, 2) = 2,

and
∂2f

∂x∂z
(1,−1, 2) = 1.

The Taylor series is then

3+2(x−1)−2(y+1)+1(z−2)+
1

2
((1)(x−1)(z−2)+(2)(y+1)2+(1)(z−2)(x−1)).

Expanding this, we get

3+2x−2−2y−2+z−2+(x−1)(z−2)+(y+1)2 = 3+2x−2−2y−2+z−2+xz−2x−z+2+y2+2y+1

= xz + y2.
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• 1.138 We begin with the array 2 1 1 3
1 −2 −2 4
3 −1 4 2

 .
For the first step, we switch rows one and two, obtaining 1 −2 −2 4

2 1 1 3
3 −1 4 2

 .
Adding −2 times the first row to the second row, adding −3 times the first row

to the third row, and then dividing both the second and third rows by 5, the

array becomes  1 −2 −2 4
0 1 1 −1
0 1 2 −2

 .
Adding −1 times the second row to the third row, we get 1 −2 −2 4

0 1 1 −1
0 0 1 −1

 .
This array corresponds to the system of equations

x− 2y − 2z = 4,

y + z = −1,

z = −1,

which has the solution z = −1, y = 0, and x = 2.

• 1.148 We want to optimize the function f(x, y) = x2 + y2, subject to the

constraint x2 + xy + y2 − 16 = 0. The Lagrangian is

h(x, y) = x2 + y2 + λ(x2 + xy + y2 − 16).

Then,
∂h

∂x
= 2x+ λ(2x+ y) = 0,

and
∂h

∂y
= 2y + λ(x+ 2y) = 0.
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Solving for λ in both equations, we get

λ =
−2x

2x+ y
=
−2y

x+ 2y
.

From the last equation we have

x

2x+ y
=

y

x+ 2y
,

or

x(x+ 2y) = y(2x+ y),

so that

x2 + 2xy = 2xy + y2,

or

x2 = y2.

Using y = x, the equation

x2 + xy + y2 − 16 = 0

becomes

3x2 = 16.

The solutions then are the points ( 4√
3
, 4√

3
) and (−4√

3
, −4√

3
); the distance to the

origin is then 4
√
6

3
. Using

y = −x,

the equation

x2 + xy + y2 − 16 = 0

becomes

x2 = 16,

so the solutions are the points (4,−4) and (−4, 4); the distance to the origin

is then 4
√

2. The curve described by the constraint function is an ellipse. The

points closest to the origin are at the two ends of its minor axis, while the points

farthest away are at the two ends of its major axis.

• 1.151 (a) The integral is∫ cosα

sinα
(x2 sinα− x3)dx =

1

3
[cos3 α sinα− sin4 α]− 1

4
[cos4 α− sin4 α].
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Differentiating, we get

1

3
[−3 cos2 α sin2 α + cos4 α− 4 sin3 α cosα]− 1

4
[−4 cos3 α sinα− 4 sin3 α cosα].

(b): According to Leibniz’s Rule, the derivative is∫ cosα

sinα
x2 cosα dx+ (cos2 α sinα− cos3 α)(− sinα)− (sin3 α− sin3 α)(cosα).

The integral is ∫ cosα

sinα
x2 cosα dx =

1

3
[cos4 α− sin3 α cosα].

The rest is algebra.

• 1.160 (a): tan θ = 3
3
√
3

so that tan θ = 1√
3

and θ = π
6
. The magnitude is√

36 = 6, so

3
√

3 + 3i = 6 exp(
iπ

6
) = 6 cis (

π

6
).

The others are done similarly.

• 1.162 (a): The angle is θ = π
4

and the magnitude is 8, so the number can be

written as z = 8 exp(π
4
). The third roots of z are then 2 exp( π

12
), 2 exp( π

12
+ 2π

3
),

and 2 exp( π
12

+ 4π
3

). The others are done similarly.
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