
92.530 Applied Mathematics I: Solutions to
Homework Problems in Chapters 2 and 3

• 2.54 (a): Differentiating y, we have

y′ = e−x(−c1 sin x + c2 cos x) − e−x(c1 cos x + c2 sin x),

so that

y′ = e−x(−c1(sin x + cos x) + c2(cos x − sin x)).

Then,

y′′ = e−x(−c1(cos x−sin x)+c2(− sin x−cos x))−e−x(−c1(sin x+cos x)+c2(cos x−sin x),

or

y′′ = e−x(c1(− cos x + sin x + sin x + cos x) + c2(− sin x − cos x − cos x + sin x))

so

y′′ = e−x(2c1 sin x − 2c2 cos x).

Clearly, y solves the differential equation. (b): From y(0) = −2, we have

c1 = −2. From y′(0) = 5, we have −c1 + c2 = 2 + c2 = 5, or c2 = 3. So the

particular solution is y = e−x(3 sin x − 2 cos x).

• 2.55 For part (a), just differentiate. (b): The first family consists of the general

solutions, consisting of straight lines; the second is a singular solution that is a

quadratic. (c) The members of the family of general solutions are lines tangent

to the quadratic solution, and the latter provides an envelope for the family.

• 2.83 Let (a, f(a)) be a fixed point on the unknown curve. The line normal to

this curve at this point is

y = − 1

f ′(a)
(x − a) + f(a),
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while the line through the origin that is perpendicular to this normal line is

y = f ′(a)x.

These two lines intersect at the point

(x, y) = (
a + f ′(a)f(a)

1 + f ′(a)2
,
af ′(a) + f(a)f ′(a)2

1 + f ′(a)2
).

The square of the distance from this point to the origin is

(a + f ′(a)f(a))2

1 + f ′(a)2
,

which, we are told, must equal f(a)2. Therefore, we have

a2 + 2af ′(a)f(a) + f ′(a)2f(a)2 = f ′(a)2 + f ′(a)2f(a)2,

or

a2 + 2af ′(a)f(a) = f(a)2.

This holds for all points (a, f(a)) on the curve. Rewriting this as

2af ′(a)f(a) − f(a)2

a2
= −1,

we have
d

da

f(a)2

a
= −1,

so that
f(a)2

a
= −a + c,

for some c, which we can easily show must be 5. Finally, we have

f(a)2 + a2 = 5a,

or, in the more familiar notation, x2 + y2 = 5x.

• 3.54 (a): We have

(0)x2 +
7

5
(3x + 2) − 11

5
(x − 1) − (1)(2x + 5) = 0,

for all x, so the four functions are linearly dependent. (b): If there are constants

a, b, c, such that

ax2 + b(3x + 2) + c(x − 1) = 0,

for all x, then, differentiating twice, we get 2a = 0, so a = 0. Then

b(3x + 2) + c(x − 1) = 0,

for all x. Taking x = 1, we get b = 0, and taking x = −2
3

, we get c = 0. So the

three functions are linearly independent.
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• 3.55 Suppose that

aex + bxex + cx2ex = 0,

for all x. Taking x = 0, we get that a = 0. Therefore,

bxex + cx2ex = 0,

for all x. Taking x = 1, we get be + ce = 0, while taking x = −1, we get

−be + ce = 0. It follows that both b and c equal zero, and the three functions

are linearly independent.

• 3.56 We use the idea described in I.2. on page 76. Since y = x is a known

solution, we look for solutions of the form y = vx, for some v to be found.

Substituting y = vx into the differential equation, we get

x2v′′ + (2x + x2)v = 0.

Setting u = v′, and restricting x to positive values, we have

du

dx
= −2x + x2

x2
u.

Separating variables, we find that

du

u
= (−1 − 2

x
)dx.

Integrating, we obtain

log |u| = −x − 2(log x) + C,

or

u = Ke−x(
1

x2
),

for some constant K. Since u = v′, it follows that

v = K
∫ e−x

x2
dx + A,

for some constant A, and finally

y = vx = Ax + Kx
∫ e−x

x2
dx.

We leave the indefinite integral in the answer, since we cannot find the anti-

derivative in closed form.
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• 3.76 Differentiating both sides of the first equation, we get

x′′ + y′ = et.

Solving for y′ and substituting into the second equation, we get

t = x − y′ = x + x′′ − et,

or

x′′ + x = t + et,

which is a second-order linear non-homogeneous ODE, with constant coeffi-

cients. Using operator notation, we have

(D2 + I)x = t + et.

The auxiliary equation for the homogeneous problem is

m2 + 1 = 0,

with solutions m = i and m = −i. Therefore, the general solution of the

homogeneous problem

x′′ + x = 0

is

x(t) = c1 cos t + c2 sin t.

To solve the nonhomogeneous problem, we proceed as in problem 3.18, using

the method of undetermined coefficients. We seek a solution of the form

x(t) = at + b + cet.

Substituting this in the original problem,

x′′ + x = t + et,

we get

cet + at + b + cet = t + et,

so that a = 1, b = 0 and c = 1
2
. The general solution for x(t) is

x(t) = c1 cos t + c2 sin t + t +
1

2
et.
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To find y(t), we use the first of the two original differential equations,

dx

dt
+ y = et,

which tells us that

y(t) = et − x′(t) = et − (c2 cos t − c1 sin t) − 1 − 1

2
et

= (c1 sin t − c2 cos t) +
1

2
et − 1.

Note that in the book’s answer, c2 is called −c2.

• 3.83 The differential equation is

x′′ + 4x = 8 sin ωt.

The auxiliary equation for the homogeneous problem is

m2 + 4 = 0,

with solutions m = 2i and m = −2i. Therefore, the general solution of the

homogeneous problem is

x(t) = c1 cos 2t + c2 sin 2t.

If ω is not equal to 2 or −2, then we can find the general solution to the

nonhomogeneous problem by seeking a solution of the form

x(t) = a cos ωt + b sin ωt.

Substituting, we get

−ω2a cos ωt − ω2b sin ωt + 4(a cos ωt + b sin ωt) = 8 sin ωt.

It follows that

4a − ω2a = 0

and

4b − ω2b = 8.

Therefore, a = 0 and b = 8
4−ω2 . The general solution is then

x(t) = c1 cos 2t + c2 sin 2t +
8

4 − ω2
sin ωt.
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Since x(0) = 0, we know that c1 = 0. From

x′(t) = 2c2 cos 2t +
8

4 − ω2
ω cos ωt,

and x′(0) = 0, we get

2c2 +
8

4 − ω2
ω = 0,

so that

c2 =
4ω

ω2 − 4
.

The answer, therefore, is

x(t) =
4ω

ω2 − 4
sin 2t +

8

4 − ω2
sin ωt,

or

x(t) =
8 sin ωt − 4ω sin 2t

4 − ω2
.

Now we consider the case of ω2 = 4.

If ω = 2, then we seek a solution of the nonhomogeneous problem having the

form

x(t) = at cos 2t + bt sin 2t.

Note that if ω = −2, our trial solution would have the same form. Differentiat-

ing, we get

x′(t) = −2at sin 2t+a cos 2t+2bt cos 2t+b sin 2t = (a+2bt) cos 2t+(b−2at) sin 2t.

Differentiating again, we get

x′′(t) = −2(a+2bt) sin 2t+2b cos 2t+2(b−2at) cos 2t−2a sin 2t) = (4b−4at) cos 2t−(4a+4bt) sin 2t.

Then

x′′(t) + 4x(t) = (4b − 4at) cos 2t − (4a + 4bt) sin 2t + 4(at cos 2t + bt sin 2t).

It follows that

4b cos 2t − 4a sin 2t = 8 sin 2t,

so that b = 0 and a = −2. The solution to the nonhomogeneous problem is

then

x(t) = −2t cos 2t + c1 cos 2t + c2 sin 2t.

from x(0) = 0, we get c1 = 0. Since

x′(t) = −4t sin 2t − 2 cos 2t + 2c2 cos 2t,
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and x′(0) = 0, we get c2 = 1. Therefore, the particular solution is

x(t) = −2t cos 2t + sin 2t.

Resonance occurs when ω = 2 or ω = −2.

7


