
92.531 Applied Mathematics II: Solutions to

Homework Problems in Chapter 6

• 6.44 View the volume as having as the floor the two-dimensional region bounded

by x
a

+ y
b

= 1 and the x and y axes, with the roof given by

z = c(1 − x

a
− y

b
).

The integral is then

∫ x=a

x=0

∫ y=b(1− x

a
)

y=0
c(1 − x

a
+

y

b
)dy dx.

The inner integral is

∫ y=b(1− x

a
)

y=0
c(1 − x

a
− y

b
)dy = c(1 − x

a
)y − c

2b
y2 |y=b(1− x

a
)

y=0

= c(1 − x

a
)b(1 − x

a
) − c

2b
(b(1 − x

a
))2

=
1

2
cb(1 − x

a
)2.

The outer integral is then

1

2
cb

∫ a

0
(1 − 2x

a
+

1

a2
x2)dx =

abc

6
.

• 6.45 The integral is
∫ x=a

x=−a

∫ y=a

y=−a
x2 + y2dy dx.

The inner integral is

∫ y=a

y=−a
x2 + y2dy = x2y +

1

3
y3 |a−a = 2ax2 +

2

3
a3,

so the outer integral is

∫ a

−a
2ax2 +

2

3
a3dx =

2a

3
x3 |a−a +

2a3

3
x |a−a =

2a

3
(2a3) +

4a4

3
=

8a4

3
.
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• 6.50 The volume has, for its floor, the quarter of the circle x2 + y2 = 4 that lies

within the first quadrant, and its roof is

z =
√

4 − x2 − y2.

So the integral is

∫ x=2

x=0

∫ y=
√

4−x2

0

∫ z=
√

4−x2−y2

z=0
xyzdz dy dx.

The inner integral is

xy

2
z2 |z=

√
4−x2−y2

z=0 =
xy

2
(4 − x2 − y2).

The second integral is then

∫ y=
√

4−x2

0

xy

2
(4 − x2 − y2)dy =

4x − x3

4
y2 − x

8
y4 |y=

√
4−x2

y=0

=
4x − x3

4
(4 − x2) − x

8
(4 − x2)2 = (

x

8
)(4 − x2)2.

The outer integral is then
∫ 2

0
(
x

8
)(4−x2)2dx =

∫ 2

0
2x−x3 +

1

8
x5dx = x2 − 1

4
x4 +

1

48
x6 |20 = 4−4+

64

48
=

4

3
.

• 6.51 The volume lies above the circle in the x, y-plane with center at (x, y) =

(1, 0) and radius one. The floor is z = x2 + y2 and the roof is z = 2x. The

integral is then
∫ x=2

x=0

∫ y=
√

2x−x2

y=−
√

2x−x2

2x − x2 − y2dy dx.

The inner integral is

∫ y=
√

2x−x2

y=−
√

2x−x2

2x − x2 − y2dy = 2xy − x2y − 1

3
y3 |y=

√
2x−x2

y=−
√

2x−x2

= 4x
√

2x − x2 − 2x2
√

2x − x2 − 2

3
(2x − x2)3/2 =

1

3
(2x − x2)

√
2x − x2.

With the substitution of t = x − 1 and cos θ =
√

1 − t2, the outer integral

becomes
8

3

∫ π

2

0
cos4 θdθ =

π

2
.

• 6.67 We do part (a). The parabola y2 = x can be parameterized as (t2, t), with

t = 1 to t = 2, and dx
dt

= 2t, and dy
dt

= 1. Then

∫ (4,2)

(1,1)
(x+y)dx+(y−x)dy =

∫ t=2

t=1

(

(t2+t)(2t)+(t−t2)(1)
)

dt =
∫ 2

1
2t3+t2+tdt =

34

3
.
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• 6.68 We can describe the base of the triangle as (t, 0), for 0 ≤ t ≤ 3, so dx
dt

= 1,
dy
dt

= 0, and the line integral along the base is

∫ 3

0
2t + 4dt = 21.

The vertical side is (3, t), for 0 ≤ t ≤ 2, with dx
dt

= 0 and dy
dt

= 1. The line

integral along the vertical side is then

∫ 2

0
5t + 9 − 6dt =

∫ 2

0
5t + 3dt = 16.

We can let the hypotenuse be described by (3 − 3t, 2 − 2t), for 0 ≤ t ≤ 1, so

that dx
dt

= −3 and dy
dt

= −2. The line integral down the hypotenuse is then

∫ 1

0
12t − 24 + 38t − 26dt = −25.

So the line integral around the perimeter of the triangle is 21 + 16 − 25 = 12.

• 6.75 The line integral in problem 6.68 is

∮

(2x − y + 4)dx + (5y + 3x − 6)dy.

With P (x, y) = 2x−y+4, Q(x, y) = 5y+3x−6, Qx(x, y) = 3, and Py(x, y) = −1,

Green’s Theorem in the plane says that

∮

(2x − y + 4)dx + (5y + 3x − 6)dy =
∫ ∫

(Qx − Py)dx dy =
∫ ∫

(4)dx dy.

Therefore, the line integral is four times the area of the triangle, that is, four

times three, or twelve. That was easier, wasn’t it?

• 6.84 The equation of the cone is

z =
√

3
√

x2 + y2.

Then

zx =
√

3
1

2

2x√
x2 + y2

=
√

3
x√

x2 + y2
,

and

zy =
√

3
y√

x2 + y2
.

Then
√

1 + z2
x + z2

y =
√

1 + 3 = 2.
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Following Problem 6.25, the surface integral reduces to the double integral

∫ ∫

R
(x2 + y2)(2)dx dy,

where R is the circle of radius
√

3, centered at the origin. The integral is best

done in polar coordinates, as

∫ ∫

R
(x2 + y2)(2)dx dy, = 2

∫ 2π

0

∫

√
3

0
r2r dr dθ

= 2
∫ 2π

0

1

4
r4 |

√
3

0 dθ = 2
∫ 2π

0

1

4
(
√

3)4dθ =
9

2

∫ 2π

0
dθ =

9

2
(2π) = 9π.

The physical interpretation of the surface integral is that it represents the mo-

ment of inertia of the cone, with respect to revolution about the z-axis.

• 6.92 With A(x, y, z) the field

A(x, y, z) = (2xy + z, y2, −x − 3y),

the divergence of A is

div A = ∇ · A = 2y + 2y = 4y.

We consider first the triple integral

∫ ∫ ∫

V
∇ · AdV =

∫ x=3

x=0

∫ y=3−x

y=0

∫ z=6−2x−2y

z=0
4ydz dy dx.

Therefore,

∫ ∫ ∫

V
∇ · AdV =

∫ x=3

x=0

∫ y=3−x

y=0
4y(6 − 2x − 2y)dy dx

=
∫ x=3

x=0

∫ y=3−x

y=0
(24y − 8xy − 8y2)dy dx =

∫ x=3

x=0
(12y2 − 4xy2 − 8

3
y3) |y=3−x

y=0 dx

=
∫ x=3

x=0
(12(3 − x)2 − 4x(3 − x)2 − 8

3
(3 − x)3) dx

=
∫ x=3

x=0
(108 − 72x + 12x2 − 36x + 24x2 − 4x3 − 72 + 72x − 24x2 +

8

3
x3) dx

∫ x=3

x=0
(36−36x+12x2−4

3
x3) dx = 36(3)−18(9)+108−27 = 216−162−27 = 216−189 = 27.

Now we consider the surface integral. The outward normal to the surface is the

constant vector

n = (2, 2, 1),
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so
∫ ∫

S
A · ndS =

∫ ∫

S
2(2xy + z) + 2(y2) + (−x − 3y)dS.

With

z = 6 − 2x − 2y,

we have
√

1 + z2
x + z2

y =
√

1 + 4 + 4 = 3.

Therefore,

∫ ∫

S
A · ndS = 3

∫ x=3

x=0

∫ y=3−x

y=0
2(2xy + z) + 2(y2) + (−x − 3y)dy dx

= 3
∫ x=3

x=0

∫ y=3−x

y=0
(4xy + 2(6 − 2x − 2y) + 2y2 − x − 3y)dy dx

= 3
∫ x=3

x=0

∫ y=3−x

y=0
(12 − 5x − 7y + 4xy + 2y2)dy dx

= 3
∫ x=3

x=0
(12(3 − x) − 5x(3 − x) − 7

2
(3 − x)2 + 2x(3 − x)2 +

2

3
(3 − x)3) dx

=
∫ 3

0
(
45

2
− 9

2
x2 +

4

3
x3)dx = 54.

• 6.93 The field is F (x, y, z) = (z2 −x, −xy, 3z), the surface is the tunnel-shaped

object bounded by z = 4 − y2, x = 0, x = 3, and with the floor the x, y-plane.

If you try calculating the surface integral directly, you quickly find that it is a

mess. Instead, let’s use the Divergence Theorem. The divergence of the field

F is the function 2 − x, which we then have to integrate over the volume. The

integral is then
∫ x=3

x=0

∫ y=2

y=−2

∫ z=4−y2

z=0
(2 − x)dz dy dx.

The integration is easy and the answer is 16.

• 6.97 In this problem, as in the previous one, we are asked to calculate a surface

integral of the form
∫ ∫

S F · ndS; now the field F is F = ∇ × A, for some field

A. As in the previous problem, the Divergence Theorem is the best way to

proceed. The divergence of the field F = ∇ × A is

∇ · F = ∇ · (∇ × A) = div curl A,

which equals zero, by (11) on page 127.
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• 6.100 Note that the curve C is the boundary of the circular region R that is

capped by the surface.

We first consider the double integral. The curl of A is (0, 0, 1) and the unit

normal n is

n =
1

6
(2x, 2y, 2

√

9 − x2 − y2).

Also
√

1 + z2
x + z2

y = 3/
√

9 − x2 − y2.

The double integral is then

∫ ∫

S
(∇ × A) · ndS =

∫ ∫

R
dy dx,

which is the area of the circular region R enclosed by the curve C, so equals

9π.

Now we consider the line integral. The curve C is the circle centered at the

origin, with radius three, so it has the representation (3 cos θ, 3 sin θ), for 0 ≤
θ ≤ 2π. The tangent vector to C is t = (−3 sin θ, 3 cos θ, 0), so

A·t = (2y)(−3 sin θ)+(3x)(3 cos θ) = −18 sin2 θ+27 cos2 θ = 18 cos(2θ)+9 cos2 θ.

The line integral is then

18
∫ θ=2π

θ=0
cos(2θ)dθ + 9

∫ θ=2π

θ=0
cos2 θ dθ.

The first integral is zero, and

9
∫ θ=2π

θ=0
cos2 θ dθ = 9

∫ θ=2π

θ=0
(
1

2
+

1

2
cos(2θ)) dθ.

The integral of the cosine term is zero, while the integral of the constant term

gives us (9)(1
2
)(2π) = 9π.

• 6.104 In order for a field

F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z))

to be conservative, we need
∂F1

∂y
=

∂F2

∂x
,

∂F1

∂z
=

∂F3

∂x
,
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and
∂F2

∂z
=

∂F3

∂y
.

The reason for this is that a conservative field is a gradient field, that is, there

is a real-valued function φ(x, y, z) such that F (x, y, z) = ∇φ(x, y, z). Therefore,

we have

F1(x, y, z) =
∂φ

∂x
,

F2(x, y, z) =
∂φ

∂y
,

and

F3(x, y, z) =
∂φ

∂z
.

Then
∂F1

∂y
=

∂2φ

∂y∂x
=

∂2φ

∂x∂y
=

∂F2

∂x
,

and similarly for the other two conditions above.

(a) Now we have

F (x, y, z) = (2xy + 3, x2 − 4z, −4y).

Then
∂F1

∂y
= 2x,

∂F2

∂x
= 2x,

∂F1

∂z
= 0,

∂F3

∂x
= 0,

∂F2

∂z
= −4,

and
∂F3

∂y
= −4,

so the conditions hold for F to be conservative.

(b) Now we need to find a function φ(x, y, z) with F (x, y, z) = ∇φ(x, y, z). We

begin with

F1 = 2xy + 3 =
∂φ

∂x
.

It follows that

φ(x, y, z) = x2y + 3x + g(y, z),
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for some function g(y, z) of y and z only. Then

F2 = x2 − 4z =
∂φ

∂y
= x2 +

∂g

∂y
,

so
∂g

∂y
= −4z,

and

g(y, z) = −4yz + h(z),

for some function h(z) of z only. So far, then, we have

φ = x2y + 3x − 4yz + h(z).

Therefore,

−4y = F3 =
∂φ

∂z
= −4y + h′(z),

from which we can conclude that h(z) is a constant function, which we can then

ignore. So we have found φ; it is

φ(x, y, z) = x2y + 3x − 4yz + constant.

(c) Since the line integral is

∫

C
F · dr =

∫ t=t1

t=t0
(F1, F2, F3) · (

dx

dt
,
dy

dt
,
dz

dt
)dt,

and, by the Chain Rule,

d

dt
φ(x(t), y(t), z(t)) = (F1, F2, F3) · (

dx

dt
,
dy

dt
,
dz

dt
)dt,

it follows that

∫

C
F · dr =

∫ t=t1

t=t0

dφ

dt
dt = φ(x(t1), y(t1), z(t1)) − φ(x(t0), y(t0), z(t0)),

where t0 ≤ t ≤ t1 are the limits of the parameter t.

Therefore, for any path C connecting (3, −1, 2) and (2, 1, −1), the line integral
∫

C F · dr is equal to the difference

φ(2, 1, −1) − φ(3, −1, 2) = 14 − 8 = 6.

We illustrate this point by computing the line integral directly, for a particular

parametrization; the reader is welcome to try another. Let the curve C be
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described by (3 − t,−1 + 2t, 2 − 3t), for 0 ≤ t ≤ 1. Then dx
dt

= −1, dy
dt

= 2, and
dz
dt

= −3. Therefore,

∫

C
F ·dr =

∫ 1

0
(2(3−t)(−1+2t)+3, (3−t)2−4(2−3t), −4(−1+2t))·(−1, 2, −3)dt

=
∫ 1

0
(6t2 + 22t − 7)dt = 6.
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