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Abstract

If U and V are topologies on an abstract set X, then the triple (X, U, V) is a bitopological
space. Using the theorem of Priestley on the representation of distributive lattices, results
of Dilworth concerning the normal completion of the lattice of bounded, continuous, real-
valued functions on a topological space are extended to include the lattice of bounded,
semi-continuous, real-valued functions on certain bitopological spaces. The distributivity of
certain lattices is investigated, and the theorem of Funayama on distributive normal
completions is generalized.

Subject classification {Atner. Math. Soc. (MOS) 1970): primary 54 E 55; secondary 06 A 35,
06 A 23, 54 C 35.

1. Introduction and notation

If (X, U) is a topological space that is not completely regular, the collection of
continuous real-valued functions denned on Zmay contain only constant functions.
The results of Wilson (1931) and Csaszar (1960) reveal that, in this case, it is wise to
introduce a second topology, say V, and consider the richer collection of functions
from A'to the reals that are U-upper semi-continuous and V-lower semi-continuous.
Wilson has shown that the lack of symmetry that results when U is generated by a
quasi-metric (a metric lacking the symmetric property) can be somewhat overcome
by the introduction of a closely related second topology. Csaszar, in a similar
manner, shows that poor separation structure in U can be replaced by good
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"bitopological" separation structure, when we consider a suitably chosen bitopo-
logical space, (X, U, V). In this article, we shall concern ourselves with the collection
of all bounded U-upper semi-continuous, V-lower semi-continuous functions from
(X, U, V) to the reals, studying, in particular, the lattice structure of this collection,
which we denote by S(X).

Dilworth (1950) investigates the lattice of all bounded continuous real-valued
functions on a topological space, obtaining a representation for the normal
completion of this lattice, using Stone's representation theorem for Boolean algebras
and the notion of extremally disconnected space. Recently, Datta (1972) has
introduced the analogous notion of pairwise extremally disconnected bitopological
space, and Priestley (1970) has obtained an elegant representation theorem for
distributive lattices, resembling the construction of Stone, and involving bitopo-
logical spaces. In this paper, we extend Dilworth's results to the study of the lattice
S(X), using both the extremally disconnected spaces of Datta and the representation
theorem of Priestley. As will be clear later, any such extension of Dilworth's results
must involve a discussion of distributivity of certain lattices. Indeed, as a conse-
quence of our investigations, we obtain a generalization of the result of Funayama
(1944) on distributive normal completions of lattices and a somewhat different
view of the theorem itself.

Throughout this paper X will denote a set, U and V topologies on X, with T the
smallest topology containing both U and V. By B(X) we denote the collection of
all bounded real-valued functions on X, and by C(X), the continuous members of
B(X), where the topology on X is understood from the context.

2. Semi-continuous functions and normal functions

A function / in B(X) is U-upper semi-continuous (U-usc) if, for all real t,
{x\f(x) < i} is in U, and V-lower semi-continuous (V-lsc) if, for all real t, {x\f(x) > t}
is in V.

A bitopological space (X,XJ, V) is pairwise completely regular (see Reilly (1972))
if the following condition, and the one obtained by interchanging the roles of
U and V, obtain: for every U-closed set Kand x not in Kthere is a U-usc, V-lsc/in
B(X) with/(;c) = 0 and/identically 1 on K. Throughout this paper we shall assume
that (X, U, V) is pairwise completely regular.

A bitopological space (X, U, V) is pairwise regular if for every U-closed (V-closed)
set AT and x not in K, there are disjoint sets Uin U and Fin V with x in U and K^ V
(x in V and K^ U). Every pairwise completely regular space is pairwise regular.

We now define the notion of normal function. For any h in B(X), let

h*(x) = inf sup h(y), h+ix) = sup inf h(y),
U(x) ysVix) F ( x ) F ( )
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where U(x) and V{x) represent arbitrary U and V neighborhoods of x. Then we
have that h* = (h*)* and h* = (A*)* for any h in B(X), and that h = h* if and
only if h is U-usc and /r = A* if and only if h is V-lsc. We say that h in B(X) is
normal if h = (A*)*. This implies, obviously, that a normal A is also V-lsc. The
collection of all normal functions in B(X) we denote by N(X). This collection is
a lattice under the following operations: for/and h in N{X) let

fvh = ([sup{/, A}]*)*, /AA = inf{/, A},

where sup and inf are the pointwise supremum and infimum. For infinite collections
we have

A subset E of X is called pairwise regular open (relative to U and V, in that order)
if E = V-int(U-cl (£)). If S is the collection of all such subsets of X, then S is a
lattice under the following operations: for E and F in S, let

EvF=\-int(\J-cl(EuF)), E/\F=EnF.

For infinite collections {EJ, we let

V{EJ = V-int(U-cl(U U A W = V-int(f| EJ.

Via the association of E with the characteristic function of the set E, XE> w e

embed the lattice S isomorphically into the lattice N(X). In other words, E is in
S if and only if the function XE ^ a t is 1 on £ and 0 off E is in N(X).

3. The normal completion of S(X)

If (£,,<) is any lattice and M'ZL a subset, we let M* be the set of upper bounds
of M, and M* the set of lower bounds of M. Then Mis a normal subset ("closed"
is Birkhoff's terminology) of L if and only if M = (M*%. If /„ is a member of £,
then the subset [/0] = {/|/^/0} is normal and is a principal normal subset. If we
let U be the collection of all normal subsets of L, then the operations
ATv M = ((#u Af)*)*, KA M = Kn M provide L' with lattice structure, and via the
association of /„ with [/„], L is isomorphically a sub-lattice of L'. It is well known
that!,' is then the minimal completion of L. Funayama has shown (1944) that it is
possible for L to be distributive while L' is not even modular. We shall discuss this
in detail later.

Following Dilworth's lead, we shall now show that the normal completion of
the lattice S(X) can be concretely realized as the lattice N(X), and also obtain a
necessary and sufficient condition for S(X) to be iV(Z). We have modified
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Dilworth's notation somewhat but the proofs are quite similar and are omitted.
In the next section we shall focus on the last result in Dilworth's article, a result
that does not extend so easily to our case. Our efforts lead us to a discussion of
distributivity, and once certain assumptions are made, we do succeed in extending
this result. The proofs there differ from those of Dilworth and will be presented in
full.

PROPOSITION 3.1. Let f be \-lsc in B(X). Then f is normal if and only if, for all
real t, the set {x\f(x) < t} is the union of sets whose complements are in S.

COROLLARY 1. Every member ofN(X) is in S(X) if and only if the V-closure of
each V-open set is again V-open.

REMARK. Datta (1972) calls a bitopological space (Ar,U,V) pairwise extremally
disconnected if the V-closure of a U-open set is always U-open (or, equivalently,
if the U-closure of a V-open set is always V-open). This notion is also discussed
in Priestley (1972).

If h is in B(X), let (h) = {/in S(X)\f(x)<h(x) for all x). One can show then
that h^ = sup {/in (h)}. Furthermore, if h is normal then h = sup {/in (h)} and the
set (h) is normal in the lattice S(X). The proofs of these assertions follow those of
Dilworth (1950) and are not given here. The association of h in N(X) with (h), a
normal subset of S(X), establishes a lattice isomorphism between N(X) and the
normal completion of S(X). Hence we can extend the above corollary to

COROLLARY 2. The lattice S(X) is complete if and only if (X,V,V) is pairwise
extremally disconnected.

In his article, Dilworth goes one step further and shows that every N(X) is
isomorphic to a C(Y) for some extremally disconnected topological space Y.
This cannot be the case, generally, for bitopological spaces. As we have seen, S is
a sub-lattice of N(X). If N(X) were isomorphic to S(Y) in every case, then N(X),
and therefore S, would be distributive, since the lattice operations in S(Y) are
pointwise ones. However, we present below an example in which S is not distri-
butive. As we shall presently see, though, the distributivity of S, in addition to being
necessary for the extension of the Dilworth result, is, in fact, sufficient.

4. N(X) = S( Y) if and only if S is distributive

Suppose L is a distributive lattice (with a largest and a smallest member, denoted
0 and 1) and let Y be the collection of all {0, l}-valued lattice homomorphisms onL.
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Viewing Y as a subset of the product of L copies of {0,1}, we give Y the product
topology stemming from the discrete topology on {0,1}. We order Y by saying
yi^y2 if and only if Ji(/)<j2(0 for aH ^ m L. Let D be all open decreasing subsets
of Y, and I all the open increasing subsets of Y, where / is increasing if and only if
yel and z~zy implies zel. The space (y,D,I) is then a bitopologjcal space and it
is Priestley's theorem (1970) that the lattice L is isomorphic to the lattice of D-closed,
I-open subsets of Y, via the association of / in L with {>>|X0 = !}•

If M is any subset of L, then {y\y(J) = 1 for some leM} is clearly I-open.
If / is the ideal in L generated by M, then

{y\y(l) = 1 for some leM} = {y\y(l) = 1 for some leJ}

since if y is 0 for every member of M, then y is 0 for every element of L that is less
than a member of M, and also for any finite suprema formed from these elements.
Hence y is 0 on all members of/. Therefore, an arbitrary I-open set /has the form
I — iy IX0 = 1 for some / in / } where J is an ideal in L. Similarly, D is in D if and
only if D = {y\y(l) = 0 for some / in K} where K is a filter in L. If / i s in I, then
D-cl(/) = {y\y(l) = 1 for all / in /*} and I-int(D-cl(/)) is equal to

{y\y(J) = 1 for some / in (/*)*}.

Therefore, a subset / of 7 has the property that / = I-int (D-cl (/)) if and only if
/can be represented as I={y\y(l) = 1}, for some /in Af, where (M*)* = M, that
is, M is a normal subset of L.

In the case considered by Dilworth, the regular open subsets formed a Boolean
algebra, and the natural symmetry of this structure facilitated a number of the
proofs. Here we assume only that S is a distributive lattice, and let (Y,D,I) be
the representation space for S. Since S is a complete lattice, the space (Y,D,I)
will be pairwise extremally disconnected. We shall show that #(.30 and S(Y) are
lattice isomorphic. To compensate for the lack of symmetry, we define two mappings
from N(X) to S(Y) and two from S(Y) to N(X). After showing that in each case
the two are really the same, we will have the option of using either of the two in
later proofs. Notice that S( Y) consists of the continuous increasing functions on Y.

DEFINITION 4.1. Let a: 5(X)->B{Y) be given by

(af)(y) = sup{ inf f{x): EeS,y(E) = 1}.
xeE

DEFINITION 4.2. Let 5: B(X)-+B{Y) be given by

(pf)(y) = inf{sup/(x): EeS,y(E) = 0}.
iE
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DEFINITION 4.3. Let T: B(Y)->B(X) be given by

(TF)(x) = inf{ sup F(j): EeS,x$E}.
V.y(E)=O

DEFINITION 4.4. Let f: B(Y)-+B(X) be given by

(fF)(jc) = sup{ inf F(y):EeS,xeE}
y. y(E)=\

PROPOSITION 4.1. Iff is in B(X) then ofis H-usc, and of is I-lsc. Iff is in N(X),
then of= of.

PROOF. Let Z = {y15f{y) <a}, and let zeZ. Then there is an Ein S with z(E) = 0
and sup/ (x)<a , the supremum taken over all x not in E. Let D = {y\y(E) = 0}.
Then D e D and 5f(y)<a for all y in D. So Z is D-open. Similarly we can show
cr/to be I-lsc.

Suppose now t h a t / i s in N(X). If, for some z in F we have of(z)<t<of(z),
then there are E and 5 in S, with z(E) = 0, z(5) = 1, and the supremum o f / o n
X—E less than the infimum o f / o n 5 . Consequently J5S.E, a contradiction, since
z(£) = 0 while z{B) = 1. So CT/VS<T/.

If, for some we Y we have 5f(w)>t>of(w), then let C = {x\f(x)^t}. By
Proposition 2.1, we know that there are sets Ea in S with C = f\aEa. Therefore
C = n a V- in t (U-c l ( ^ a ) ) cn a U-c l (EJ . Also

U ^ n ^ C ^ J ) = C.

Let ^=V-intU-clC. Then

So A is a member of S and is contained in C. It must then be the case that w(A) = 1,
for if w(A) = 0 then df(w) < sup/(x), taken over x not in A, this supremum being,
at most, t. Since of(x)<t and w(A) = 1, it follows that the infimum of/(x), over
x in A, is less than t, a contradiction, since A^C. Therefore, o and 5 agree on

PROPOSITION 4.2. //"F w in 5( Y), then ?F is \-lsc. Furthermore, ifF is in S( I0>
then TF is normal and equal to fF.

PROOF. The first assertion is easily proved and we omit it here. We start by
assuming that F is in S( Y). If, for some x in X, we have TF(X) < ?F(x), then there
are E and B in S, with x in E but not in B, and with sup F(y), over y with y(B) = 0>
strictly less than infF(j), over j> with y{E) = 1. Consequently, there is no y with
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y(B) = 0 and j(£) = 1. It follows, then, that E^B in S, or E^B. This is a contra-
diction, from which we conclude that fF< TF. If, for some x, we have

TF{X) =p<t<r = TF(X),

then for every A in S with Jc eA, we have inf F(y) </> < t, with the infimum over all
y with y{A) = 1. Let D = {y\F(y)<t}. Since Fis in S(Y), it is D-usc and hence D
is in D. Since ( Y, D, I) is pairwise extremally disconnected, we have G = I-cl (D)
again in D. Therefore G is I-closed and D-open. According to the Priestley
representation theorem, there is an E in S such that G = {j|X^) = 0}. If x were
in E, we would have F(y)</>< t for some j> such that y\E) = 1. Since F(j)< f, y is
in D, hence in G, and so j(^) = 0, a contradiction. So x is not in E. Therefore,
r < sup F(y), over all j with y(E) = 0, and there is a / with F(y') > r and /(£.) = 0.
It follows that G intersects {y\F(y)>r}. But the set { J | F ( J ) ^ / } is I-closed and
contains D, hence contains G. So T and f agree on members of S( Y). We need only
prove that TF is normal. Consider the set Z = {x \ TF(X) < a}, and z in Z. Let
TF(Z) = b<a. For some £ in S that does not contain z, we have supF{y)<a, with
the supremum over all y with y{E) = 0. We show that X—E is a subset of Z.
If not, then there is x not in is and not in Z. So rF{x) > a. Since Jc is not in E,
supfCy), over y with y(E) = 0, is greater than TF(X), which is greater than or
equal to a, a contradiction. Hence Z is the union of sets whose complements are
members of S, so T.F is normal by Proposition 3.1.

With the help of several lemmas, we shall establish that T: S(Y)->N(X) and
a: N(X)-+S(Y) are mutually inverse lattice isomorphisms.

LEMMA 4.1. For every E in S that contains x, and for every f in B(X),
rof{x) ̂  inff(z), taken over all zeE.

PROOF. For every E containing x, we have raf{x) >inf of(y), the infimum taken
over all y with y{E) = 1. Hence, for each such E, there is y, with j(£) = 1 and
Tof(x)>of{y). Clearly af(y)>inf/(z), over all z in E.

LEMMA 4.2. Iff is in B(X), then rof>f*.

PROOF. If we have raf(x) < t </*(*) for some x, then, by the definition of /*,
there is a V-neighborhood of x with inf/(z), taken over z in this neighborhood,
greater than /. Since (X,\J,\) is pairwise regular, we can assume that this
V-neighborhood is actually a member of S, and we call it E. Since E contains x,
we know, from the previous lemma, that raf{x) > inf/(z), the infimum taken over
z in E. So rof(x)^t, a contradiction.
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LEMMA 4.3. Iff is V-fac in B{X), then rdf^f*.

PROOF. If we have T<T/(X) > t >/*(*), then there is a U-neighborhood, U(x), of x,
with sup/(z) < t, the supremum taken over all z in U(x). By the pairwise regularity
of (X,U, V) we may assume that U(x) is the U-interior of its V-closure. Then we
let E = X-V-c\(U(x)). Then E is in S and does not contain x. Since -raf(x)> t, we
have sup 5f(y) > t, where this supremum is taken over all y with y{E) = 0. We then
can select a y e Y with df(y) > t and y(E) — 0. Since af(y) < sup/(z), over all z
not in E, we know that df(y) is not greater than the supremum of/on V-cl(l/(x)).
Since/is V-lsc and t/(x)£/-1(-oo,*)£/~1(-oo,f], with the latter V-closed, we
know that af(y) < t, a contradiction.

COROLLARY 4.1. #"/w in N{X)

LEMMA 4.4. IfFis in B(Y), then

PROOF. It is clear that 5rF(y) =% sup F(w), with the supremum over w with
w(E) = 0, for every E in S with y(E) = 0. If 5TF{y)>t>F*{y) for some y, then
there is a D-neighborhood, I>, of j>, with sup F{w) < t, the supremum over all w in D.
Since the I-closed, D-open sets form a base for D, we assume that D is also I-closed
and hence has the form D = {w| w(E) = 0} for some E in S. Then y\E) = 0, so
that 5rF{y) < sup F(w) over all w in D. Therefore arFiy) < /, a contradiction.

LEMMA 4.5. / / F w /« B(Y) then

PROOF. The proof is similar to that of Lemma 4.4 and we omit it here.

COROLLARY 4.2. IfFis in S(Y) then F^^arF^F*.

LEMMA 4.6. Iff is in N(X) then raf^f.

PROOF. We have Taf={raf)*^ and rof^f*, so that (jaf)* < /**=/* and

LEMMA 4.7. TfFw /« S(Y) then OTF<F.

PROOF. It is essentially the same as that of Lemma 4.6 and we omit it.

LEMMA 4.8. Iff and g are in N(X) andf^g then af^ag. Similarly, ifF^G in

PROOF. Obvious.
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We now summarize these results in the following:

THEOREM 4.1. Iff is in N(X) then rof=f. If F is in S(Y) then OTF=F. The
lattices N(X) and S( Y) are isomorphic.

COROLLARY 4.3. If(X,\J,V) is apairwise completely regular bitopological space,
then the lattice S(X) has a distributive normal completion if and only if the lattice
S is distributive.

5. Funayama's theorem and the distributivity of S

Let us begin by considering some examples.

EXAMPLE 5.1. Let X be the real line, U the topology generated by right infinite
open rays, and V the topology generated by left infinite open rays. As can be easily
verified, the lattice operation v on S is simply the set-theoretic union, so that S is
distributive. The topology generated by U and V is the usual topology.

EXAMPLE 5.2. Let X be the real line, V the topology generated by the sets (a, b]
and U the topology generated by the sets [c, d). Let E = (—oo, 1), F = (—oo, 1], and
G = (1, +oo). Each of these sets is in S, and Ew G = Fv G = X, EA G = F A G = 0,
but E^F. Therefore S is not distributive. Note that the topology generated by
U and V is the discrete topology.

EXAMPLE 5.3. Let X = {0,1,2,3,...}, V the topology generated by the sets whose
complements both contain 0 and are finite, and U the topology generated by all
supersets of 0. Here every member of V is in S and so the lattice operation v is
set-theoretic union and S is distributive. Note that as in Example 5.2, the topology
generated by U and V is discrete. So this phenomenon is not relevant to the
distributivity question.

EXAMPLE 5.4. Let X be the real line, V the usual topology on X, and U the
topology generated by the sets [c,d). Then U2V, S is not all of V, and the lattice
operation v is not set-theoretic union. However, S is distributive as can be verified
directly, or derived as a consequence of our theorem below.

From now on, E, F, G and H will denote arbitrary members of S. We denote by
A* the U-closure of set A, and by A~ the V-interior.
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PROPOSITION 5.1. The following are equivalent:
(1) S is distributive;
(2) EA (Fv G) = (FA F) v (EA G) for all E, F, G in S;
(3) E— n (Fu GT~ = (En (Fu G)T~ for every E, F, G in S;
(4) for any H in S, H^(FuG)~ implies that H" = (Hn(FvG))~.

PROOF. (1) if and only if (2) is immediate, as is (2) if and only if (3). Assume then
that (3) holds, and suppose that # £ U-closure (FuG). Since H is in V, we know
H^H*~n(FuGT~, so that H = H*~n(Fu<7T~. Since

H = H*~ n (Fu GT~ = (#n (Fu G)r~

by (3), we have that H* = (Hn(FuG))~, so that (4) holds. Assume now that (4)
holds. Let H = En (Fu G)*~ = F.— n (Fu G)~~. Then # £ (Fu G)~ and so by (4)
Hf=(Hn(FuG)T. We then have H~ = H<=(Hn(FuG)T~ so that

F.~~ n (Fu GT~ = # £ (F^~ n (Fu G)*~ n (Fu G))^~ = (E*~ n (Fu G))^~

The opposite inclusion is always valid and hence (3).

DEFINITION 5.1. For any E in S, let E+ = X- U-closure (E), and let

S+ = {E+\Ein S}.

THEOREM 5.1. The lattice S is distributive if and only if for every E in S, EuE+
is dense in X, relative to the topology T generated by U and V.

PROOF. Suppose there is an E in S for which EuE+ is not T-dense. Select an
x in Z-T-cl (E u F+). Then, by the pairwise regularity of (X, V, V) and the definition
of T, we can find sets Fin S and Uin S+ with xeVnU, and Vn t /sU-cl(F)-F.
Let Q = V-int(Z- £/). Then Q is in S. We show that Vs\J-d(QuE).

If xe V then either xe U or x£ J7. If xe Un V then jceU-cl(F)£U-cl(£>uF).
If .v £ £/ but x e V then x e (JT- £/) n V. Since J\T- f/ is the U-cl of its V-int, we have
X-U= U-clg. Therefore xeU-clgcU-cl(0uF.). We now show that S is not
distributive by showing that (4) of Proposition 5.1 fails.

If (4) were true, then we would have

V* = ( F n ( g u F ) r = ( ( F n 0 u ( F n F ) r = (VnQTu(VnET.

Then, since x is in V*, we must have x in ( F n 0 ^ or in (FnF)~. If xe(VnQT
then xeQ* = X- U and so x is not in J7, which is false. If, on the other hand, we
have jce(FnF)^, then U, which is a U-neighborhood of x, must intersect FnF.
This forces Un V to intersect F, which it does not do. So (4) fails, and S is not
distributive.
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Now we suppose that S is not distributive, and show that there is an E in S with
Eu E+ not T-dense. There are two cases to consider (Birkhoff (1967)), but the proof
is the same in each one and so we consider only the case in which S contains five
elements P,Q,R,S,T, with Q^R, RvS=QvS=T, and RAS= QAS = P (the
other case does not have Q^R; rather RA Q = P,RWQ = T). We shall prove that
the set Rn(X-Q^), which is in T, is non-empty and contained in S~—S. Since
Q and R are in S, £T$-R~, and R^Q~, so R-Q~^0. We show R-Q^^S^-S.
We know that R*uS~ = Q*uS* so that

(/T u S^)n(X-S^) = (Q*-uS~)n(X-S~),

and so R*n(X-S*) = Q*n(X-S"). Therefore, Rn(X-Q*)cS*. But if x is a
point of Rn(X-Q") and also of S, then xeRnS=QnS. So xeQ, a contra-
diction. Letting E= S, it is clear that the complement of EuE+ contains the
non-empty T-set R-Q*. The theorem follows.

COROLLARY 5.1. VfUsV or V s U then S is distributive.

PROOF. Suppose, for instance, that U s V. Then T = V and if E is in S, then
E is V-open. Therefore E is (V) regular open and E+ is its complement in the
Boolean algebra of (V) regular open sets. By a standard argument (see, for example,
Halmos (1963), p. 15) we conclude that EuE+ is V-dense.

In his 1944 article, Funayama gives an example of a distributive lattice L whose
normal completion, L', is not even modular. He also gives a necessary and sufficient
condition on L for L' to be distributive. We use Priestley's representation for L,
along with the theorem just presented, to obtain Funayama's condition, in somewhat
altered form.

According to Priestley's theorem, there is a bitopological space (Y,D,I), as
discussed earlier, such that L is isomorphic to the lattice of I-open, D-closed
subsets, L, via the association of / with {j'lXO = !}• The minimal completion of
L is the lattice of subsets E of Y with E = I-int(D-cl(£)), which we denote by K.
We may then identify K with L'.

REMARK. We use K, instead of S to avoid confusion. However, the results just
given for S apply equally to K.

As we saw earlier, E is in K if and only if E — {y\ j(/) = 1 for some /e M} where
M is a normal subset of L. Then the set E+, which is Y-D-c\(E), has the form
E+ = OiXO = 0 for some / in M *}. If L' (and hence K) is not distributive, then
there is some E in K such that EoE+ is not T-dense in Y, where T is the topology



464 John August and Charles Byrne [12]

generated by I and D. Therefore there is a T set, T, of the form

contained in ¥-(EuE+). Therefore, whenever y(l0) = 0 and X'i) = 1> it is the
case that y is identically 0 on M and identically 1 on M *.

Conversely, suppose that within the distributive lattice L we can find a normal
subset M and two elements /0 and lx, with /i</0, such that for every y in Y for
which y(l0) = 0 and Xd) = 1, >* is identically 0 on M and identically 1 on M*.
It follows then that /x Am s; /„ for all m in M, while lovn^lx for all n in M*. Within
the lattice of normal subsets, then, we have

Mv[lo] = Mv[l1vlo] and MA[/ 0 ] = MA[ / 1 V/ 0 ] , with ftv/y^KJ.

The sub-lattice consisting of the elements M, [/„], [/iv/0], M v [^v/,,] = Af v [/„] and
MA[I[V/ 0 ] = MA[/ 0 ] is then non-distributive. In fact, it is even non-modular.

We can summarize these findings as follows :

THEOREM 5.2. If L is a distributive lattice and L' its normal completion, then L'
is non-distributive if and only if there is a normal subset M in L, and distinct elements
/„ and lx in L, such that /ovn>/x for all n in M*, and lxf\m<,lafor all m in M.
In this case, L' is also non-modular.
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