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RECONSTRUCTION FROM PARTIAL INFORMATION
WITH APPLICATIONS TO TOMOGRAPHY*

CHARLES L. BYRNET AND RAYMOND M. FITZGERALD}

Abstract. The problem of reconstruction from projections in Hilbert space is treated. An axiomatic
basis is considered which leads to techniques which provide improved reconstructions by incorporating
prior knowledge to tailor the Hilbert space to the problem at hand. When applied to reconstruction of the
Fourier transform of a function sampled at finitely many discrete points, the procedures lead to previously
derived optimal estimation techniques. When applied to x-ray tomography, the procedures lead to new
reconstruction techniques which are shown to include as a special case the minimum energy reconstruction
of Logan and Shepp [Duke Math. J., 42 (1975), pp. 645-659].

1. Introduction. Techniques for the reconstruction of mathematical objects from
partial information have a variety of important applications. The estimation of a
Fourier transform from finitely many samples, the approximation of linear attenuation
functions from x-ray data, the extrapolation of time-series beyond the observed values
and the reconstruction and enhancement of images in radio astronomy and picture
processing share a mathematical foundation that is best understood within the context
of Hilbert space approximation theory.

The problems we want to solve are typically ill-posed; the finite data we have
gathered do not uniquely specify the function to be reconstructed. For this reason the
notion of reconstruction is itself problematic, and we begin in § 2 with a discussion
of various properties any reconstruction procedure should exhibit. This axiomatic
analysis of reconstruction procedures suggests certain basic principles to be followed
in the design of reconstruction techniques. In § 3 we apply these principles to the
problem of estimating the Fourier transform of a function from finitely many samples.
Our intent here is to illustrate the content of the axioms previously developed as well
as to prepare for the tomographic reconstruction algorithms to be discussed in § 4.
In the final § 5 we compare tomographic algorithms due to Logan and Shepp with
those of § 4.

2. Reconstructions in Hilbert spaces. Suppose that f is an unknown member of
a Hilbert space H and that we have only incomplete information about f, namely,

(1} xfI<fagj)= ]':1!23”'51\/:

where the g, j=1,-- -, N are known linearly independent members of H and (-, )
denotes the inner product. We wish to reconstruct f from the data (1). So that we
may better understand how this may be accomplished, we consider five properties of
a reconstruction procedure and analyze the consequences of using these properties
to give an axiomatic statement of the meaning of reconstruction. We begin by assuming
only that a reconstruction method R is a function from H to itself, with R(f) denoting
the reconstruction that results when the unknown element is f.
The first property is (a) linearity:

(2) Riaf+Bh)=aR(f)+BR(h),
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for any scalars & and B and elements f and h of H. The second is (b) continuity:

3) lim R(f+h)=R(f),

|ihli-=0
where ||+ || denotes the norm of H. These two properties, although not absolutely
essential, greatly simplify error analysis and make available the elegant machinery of
Hilbert space. The third property is (c) computability: for each f,

(4) R(f)=R(Ps(/),

where G =spani{gi, ", g,} and Pg denotes the orthogonal projection onto G.
Property (c) is necessary if R(f)is to be computed from the data we have. The fourth
property is (d) consistency: for each f we have

) (R, gy =g F=L2Z N

Property (d) is not essential either, but, unless one has strong reasons for not assuming
that the reconstructed element shares with f the data that have been observed, it is
the common practice to accept (d).

Careful consideration of the four axioms above reveals that they have no approxi-
mation-theoretic content. Although it does follow from (a), (b), (c) and (d) that R is
a projection, that is R(R(f)=R(f), it does not follow that R is an orthogonal
projection, so that R(f) need not be the closest element to f in the range of R. Indeed,
R(f) canbe a considerable distance from f. To remedy this situation we need a fifth
property, (&) optimality : for any f and h in H, we have

(6) If = RAI=NF =R

It follows from (a), (b), (c), (d) and (e) that R is the orthogonal projection onto its
range R(H). We show that actually R (H) = G. From (c) it follows that the dimension
of R(H) is at most N, while from (d) we can show that the dimension of R(H) is at
least N. Therefore, it must be N. Note that if Ps(h)=0, then from (c) it follows that
R(h)=0. Consequently R(H)=G:if m isin R(H) but not in G, then m— Pgm is
not 0 and m — Pgm 18 orthogonal to G, hence to R(H). But then

llm — Pom|[* = (m — Pom, m = Poim)

(7

={(m, m— Pgm)—{Pgm, m —Pem)y=0-0,
som—Psm=0.
Summarizing, we have shown that any method of reconstruction that satisfies all

five of the properties discussed must reduce to the orthogonal projection onto the
range of R, which must be G. Therefore, all such reconstructions will have the form

N
(8) R(f) = o aigi

T

with the a;, =1, "~ , N, chosen so as to satisfy (5). We have the option of discarding
any or all of the five properties. However, a more reasonable alternative exists if we
are unhappy with reconstructions of the form (8).

In practice, the object to be reconstructed is usually a function of one or more
variables. The Hilbert space H in which we choose to place this function is largely
up to us. Certain well-known Hilbert spaces, such as [ *(—00, ), are frequently used.
It is the selection of H that affords us the most flexibility in designing reconstruction
techniques and at the same time the opportunity to tailor H to the problem at hand
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so that the reconstruction, whose general form is given in (8), will share broad features
of f such as we know them a priori.

In order to illustrate the content of the five properties and the principles of
reconstruction design suggested by them, in particular, the importance of the careful
selection of the ambient space H, we present in the next section an application of
these ideas to the problem of estimating the Fourier transform of a function from
finitely many sample values.

3. Fourier transform reconstruction. Suppose we have observed the function x(r)
at the values r=1;, -, fx, and on the basis of this data we wish to estimate the
Fourier transform of x(¢),

9) X(w)=J. x (1) e™" dt.

The data are insufficient to determine X (w) uniquely. Our success in reconstructing
X (w) will depend upon our ability to incorporate prior knowledge about X (w) into
the reconstruction method. As an illustration, let us reconstruct X (w), assuming
X(w)=0 for ||>c, where o >0 is some known constant. In this case we say that
x(f) is o-band-limited.

Let us take X (w) to be a member of the Hilbert space H = L*(—a, o). Then

(10) x(f) = J X (@) €™ dwo/2m = (X (), gi(@)),

iwt,

where g;(w)=e"™" for |w|=0 and 0 for |w|>c. According to the discussion in the
previous section, we should take as our reconstruction of X (w),

N
(11) RX(@y={ 5% ez

0 otherwise
where the ai, - -, ay are chosen so that R(X (w)) is consistent with the data. We
then have ' .

N osin(t —t)o

(12) x(t) :El a,m
for k=1,2, -+, N, which must then be solved for a,- - an. By property (e) this

choice of coefficients minimizes the expression
i N fw!. |2
(13) J X (@)=Y aje“ dw.
—a i=1

The estimate R(X(w)) is the best approximation of X (w) of its particular form, in
the sense of the L*(—a, o) norm (13). In[4]it was shown that this estimation procedure
is implicit in a number of recently published techniques for band-limited extrapolation
(Cadzow [3], Papoulis [7], Kolba and Parks [5]). It also plays an important role in
the derivation of time-limited sampling theorems for band-limited signals [1].
Suppose we have additional prior knowledge about X (w), such as relative energy
concentrations in various bands or that X (w) has a noise or clutter component of
known statistical form. Let us take P(w) Z 0 to embody these broad features of X (w),
such as we know them a priori, taking care that P(w)=0 only if X(w)=0. Then
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consider the Hilbert space H = L*(—0, 0; 1/P(w)), whose inner product is given by

(14) (W), gl = | Fw)g@)/Plw) do/2m,

where the integral is understood to be taken over that part of the line where P(w) is
not zero. Viewing X (w) as an element of this H, we have forj=1,-- -, N,

oc

x(f) -‘-J X(w)e “idw/2m
(15) -
= jf X(w)e “iP(w)]/Plw) dw/2m =(X(w), e"""P(w))p.

Our reconstruction of X (w) must then take the form
N N
(16) R(X(w))= _Zl aigilw) = El a;e"""P(w),
i= j=

and the choice of coefficients is such as to minimize the expression

A

N )
(17 J X(w)— ¥ aj-e{w{’P(w)F/P(w) dw/2m.
—o ;‘:_l
The system of equations to be solved is then

N
x(rk):z ajg(tk‘utj); k=1’27“'5M
i=1

where

o0

gl(t)y= J Plw)e ™ dw/27.

Two points are worth noting here. The first is that because P(w) has been selected
to embody broad features of X (w), so will R(X (w)). The second is that the inverse
weighting of the approximation error in (17) makes it possible to increase the sensitivity
of the estimator to errors made in approximating small values of X (w). This increased
sensitivity to the less prominent features will be of special importance in tomographic
reconstructions based on these estimators.

In the example discussed earlier, our knowledge that X (w) =0 for |w| > o justified
our use of the space L*(=a, o). In fact, the same reconstruction could have been
obtained had we set P(w)=1 for |w|=e, 0 for |@|>0c and proceeded according to
(16), (17). A detailed discussion of the Fourier transform estimation methods is
presented in [2] along with recursive algorithms for the solution of the linear systems
involved.

4, Tomographic reconstruction. The basic problem of x-ray tomography is the
reconstruction of a cross-section of density distribution (or linear attenuation function)
from a finite set of x-ray data. For concreteness let D = {(x, y)|x* + y® =1}, and suppose
that for any chord C of D the drop in x-ray intensity I is given by

(18) I(final) = I (initial) exp (—J £x, y) ds),

where the integral is the line integral along C. For every point (1, 8), [{{ =1,0=6 <,
in D (in polar coordinates) we associate the chord C(t, 6) having (¢, #) as its midpoint.
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This chord then is {(x, y)|x cos 6 + y sin @ =t}. Parametrically, this chord is given by

(19) C(t,8)={(rcos 8 —usin 8, t sin § + y cos 8) |u| =v1- 7.
The Radon transform of f(x, y) is defined by
1=z
(20) Pi(1, 8)= [___f(t cos 6 —u sin 6, £ sin 6 + i cos ) du,
u=-—v1l-g

and assigns to each chord € (1, ) the integral of f(x, y) along that chord. We sce then
that our data can be taken to be finitely many values of the Radon transform

(21) Pf('rjs 8})! j=1’2a"'JM

where the # are not necessarily distinct, nor are the 6;; only the pairs (#, 6;) are distinct,
We define the two-dimensional Fourier transform of flx, y) as

(22) fres)=[[ sy e axay,
D
The Fourier transform of Py(1, 6) treated as a function of ¢ only is
1
(23) Iif(w, &) :J Pi(t, 8) ™ dr.
-1

It is easily seen that for —o0o < ¢ <0, 0=0<m,

(24) Py, 8) = flw cos 6, w sin 0).

The problem of reconstructing f(x, v) from the data (21) is not precisely the same
as the problem treated in the last section. We do not have values of f(r, §) on which
to base our reconstruction. Two approaches seem reasonable. The first involves using
the data to estimate ﬁf(w, 6), along the lines of § 3. From (24) we then have values
of the Fourier transform of f; from which we compute f(x, y) itself. The second
approach does not use § 3 directly but rather the ideas of § 2. We consider f(x, y) as
an element of an appropriate Hilbert space and view the data as finitely many inner
product values,

In order to use the first approach it is necessary that the chords C(t, 6,) be in
parallel groups, that is, our data is

(25) Pf(ff,k,gj), k:l,...,I(l_’ flzl,"‘,M’

so that there are M distinct directions 01,7+, Ong, corresponding to which there are
parallel chords at the ¢-values Yits iz, "+, bk Using the data

(26) Pf(tj,k’ 91'); k = 1: Yy, K'j;

to estimate Isf(m, ;) foreachj=1,-.- M, we then obtain values off(cu COS 6, w sin §)
corresponding to each ¢ = 6. The problem is then reduced to that of reconstructing
f(x, y) from values of its Fourier transform. This problem is analogous to the one-
dimensional problem discussed earlier, and we shall omit the details.

The second method employs the ideas of § 2 directly. We consider f(x, y) as a
member of a Hilbert space H to be specified below. Once we find elements ei(x, y)
in H with, forj=1, - - - , N,

(27) Pf(th 6]) = (f(x! }’)» Ej(x, )J)),
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we then have the form of our reconstruction:
N

(28) R(flx,y)= ¥ ae(x )
i=

where the a;, j=1,+-+, N are chosen so as to make R(f{(x, y)) consistent with the
data (21). Which Hilbert space H we choose will affect the functional form of the
e;(x, y), so it must be chosen with some care.

Suppose f(x, y) =0 on D and we are able to construct a prior estimate a(x, y) >0
of f(x, y), based on our knowledge of what the object is that is being x-rayed, what
typical features it must have, etc., or perhaps based on a prior tomographic reconstruc-
tion from the same data. We then employ A(x, y) the way P(w) was used in the last
section. Define

V/h(x,y) ifh(xy)#0,

(29) wix y)= {0 otherwise.

We shall assume that f(x, y) =0, if A(x, y) = 0. Consider the space L*(D; w(x, y)) with
inner product

(30) (flx, y), glx, y)) = JJDf(x, viglx, y)w(x, y) dx dy.

We need to place some restrictions on f(x, y) in order to find ¢;(x, y). We require that
the function Ps(s, 8;) be o-band-limited for each j=1, - - -, N. What the values of the
o1, * v, o are is unimportant for what follows. These values are free parameters that
can be altered to improve the performance of computer implementation. With these
assumptions it can be easily checked that for j=1, -+, N,

sin (#; —x cos 8, — y sin 8")Uih(k )
m(t;—x cos ;—y sin ;) Y

(31) elx, y)=

and so our reconstruction has the form

N sin (f;—x cos 8; — y sin 8;)a;

(32) R(flx,y)=h(xy) X o

ar(t;—x cos §;—y sin 6;)

where the @y, * - -, an are chosen s0 as to make R(f(x, y)) satisfy the data (21). _
It follows from our discussion in § 2 that these coefficients minimize the expression

(33 ] 17630 £ et )P rhix, ) dedy.

If we know a priori that f(x, y) takes on large values in certain places (for example,
bone in the x-ray of a head) we can build that into /(x, y), thereby making the
approximation error with respect to the smaller values of f(x, y) more significant than
it would be if we used say L*(D) for our H.

Returning to the first method mentioned earlier, if our chords do lie in parallel
groups and we choose to use the methods of § 3 directly, we still use our prior i (x, y).
Indeed, from h(x, y) we get h(r, 5), its Fourier transform, and then from (24) we have
for —w0<w <0, 0=60 <,

(34) H(w cos 8, w sin 6) = P, (w, ).

* For each fixed direction 6;, we could employ | Py (w, 6,)| as the P(w) required to perform
the Fourier transform estimation.
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The first method for tomographic reconstruction, although it requires parallel
groups of chords, has the advantage that the Fourier transform estimates needed for
each fixed 8, are calculated independently of all data not associated with #;. The second
method has the advantage that it places no restriction whatsoever on the pairs (1, ¢;)
and.so can easily be used with the faster fan-beam method.

5. Relation to a method of Logan and Shepp. In [6] a technique for tomographic
reconstruction is given for the case in which P(t, 8;) is known for all ¢ and for
j=1,-+-, N. This is, of course, equivalent to assuming ﬁf(w, #;) is known for all w for
eachj=1,--, N. If we take H = L*(D), then

(35) B, 0)= [ [ i viesatn y) dxay,
D

where for j=1,--+, N,

(36) €. (%, y) =exp (iw(x cos 6; +y sin 6;)).

According to § 2 again our best reconstruction in H would be

(37) R(f(x, y)) = L ot (X, ¥),
I,LI)
where the sum is over j =1, -+, N and all w. More properly, we should write
N o0
(38) RU= T [ a@euls y) do,
= —00

where the a;(w) are chosen so as to satisfy the data constraints. In [6] Logan and
Shepp discuss so-called “ridge functions™ p;(x, y) of the form

(39) pi(x, y)=p;(x cos 6; +y sin 6;)

and show that the minimum energy reconstruction of f(x, y) has the form
N
(40) folx, y) = _Zl pi(x, y).
i
In fact, fo(x, y) = R{f(x, y)) of (38), and
@41) ps = et y) do

foreachj=1,---,N.

Our approach has been to assume only finite data and to seek optimal resolution
in the reconstruction by tailoring the ambient Hilbert space to the problem at hand
rather than relying on larger data sets. When applied to the hypothetical case of
continuous data in N directions these techniques provide the same reconstruction
as[6].

REFERENCES

[1] C.BYRNE AND R. FITZGERALD, Time-limited sampling theorems for band-limited functions, submitted
to IEEE Trans. Inform. Theory.

, Fourier transformation estimation with prior knowledge, submitted to IEEE Trans. Acoust.,

Speech, Signal Proc.

(2]




940 CHARLES L. BYRNE AND RAMOND M. FITZGERALD

[3] 1. A. Capzow, An extrapolation procedure for band-limited signals, IEEE Trans. Acoust., Speech,
Signal Proc., 27 (1979), pp. 4-12.

[4] R. FitzGERALD AND C. BYRNE, Extrapolation of band-limited signals: A tutorial, in Signal Processing:
Theories and Applications, M. Kunt and F. de Coulon, eds., North-Holland, New York, 1980,
pp. 175-180.

[5] D. P. KoLBA AND T. W. PARKS, Extrapolation and spectral estimation for band-limited signals, IEEE
International Conference on Acoustics, Speech, and Signal Processing, April 1979, pp. 194-199,

[6] B. F. LOGAN AND L. A, SHEPP, Oprimal reconstruction of a function from its projections, Duke Math.
J., 42 (1975), pp. 645-659,

[7] A.PAaPOULIS, A new algorithm in spectral analysis and band-limited extrapolation, IEEE Trans. Comput.
Syst., 22 (1975), pp. 735-742.



