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4. an elementary proof of the Baillon–Haddad Theorem;
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6. Bauschke-Combettes BH Theorem;

7. averaged operators and the Krasnosel’skii-Mann Theorem;

8. using the BH Theorem.

TFAE
Mathematics is sometimes said to be the science of patterns. Patterns often show up

in the way theorems are formulated. One popular pattern, or template, for mathematical
theorems is the “TFAE” pattern,

The following are equivalent:

The three versions of the Baillon–Haddad (BH) Theorem we present here all follow
the TFAE pattern.
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Convergent Operators
HereH is a Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖. We are concerned

with the behavior of sequences {xk} defined by

xk = Txk−1,

where T : H → H is a continuous operator.

Definition 1. Let T : H → H. A vector z is a fixed point of T if Tz = z. The set of
fixed points of T is denoted Fix(T ). The operator T is convergent if, for any starting
vector x0, the sequence {xk} generated by xk = Txk−1 converges weakly to a fixed
point of T , whenever T has fixed points.

Objectives
We have two basic objectives.

• Given a particular operator, we want to decide if it is convergent.

• We want a large class of convergent operators from which to construct iterative
algorithms.

Differentiation

Definition 2. A function f : H → R is Gâteaux differentiable at x if there is a vec-
tor ∇f(x) such that, for every x and d, the directional derivative of f at x, in the
direction d, is given by 〈∇f(x), d〉. The function f is Gâteaux differentiable, or just
differentiable, if f is Gâteaux differentiable at each x.

Theorem 3. If T = ∇f is continuous, then f is Fréchet differentiable and f is contin-
uous. For a convex f : RJ → R, Gâteaux differentiable and Fréchet differentiable are
equivalent.

Orthogonal Projections and Gradient Operators

1. Let C be a nonempty, closed, convex subset of H. For every x in H there is a
unique member of C, denoted PCx, that is the closest member of C to x. The
operators PC are the orthogonal projection operators.

2. Let f : H → (−∞,+∞] be Gâteaux differentiable. Its gradient operator is
T = ∇f .

Fundamental Problems

1. The Convex Feasibility Problem (CFP): Let Ci, i = 1, ..., I , be nonempty,
closed, convex subsets of H, with nonempty intersection C. Find a vector x in
C.

2. The Constrained Minimization Problem: Let C be a nonempty closed subset
ofH and f : H → R. Find x in C such that f(x) ≤ f(y), for all y in C.

3. Combine the Two: Given x, find the point in C = ∩Ii=1Ci closest to x.
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Solutions as Fixed Points

1. CFP: A vector x solves the CFP if and only if x = PCi
x, for i = 1, ..., I . How

about

x =
1

I

I∑
i=1

PCi
x?

2. Constrained Minimization: Let C be a closed, nonempty, convex subset and
f : H → R be convex and differentiable. A vector x in C solves the constrained
minimization problem if and only if

x = PC(x− γ∇f(x)),

for any γ > 0.

Projected Gradient Descent Algorithms
For k = 1, 2, ... let

xk = PC(x
k−1 − γk∇f(xk−1)),

for selected γk > 0. Can we find some γ > 0 such that the operator PC(I − γ∇f) is
convergent? Is there γ > 0 such that the sequence

xk = PC(x
k−1 − γ∇f(xk−1))

converges to a minimizer of f over C?

The CQ Algorithm
Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex sets. The

split feasibility problem (SFP) is to find x in C such that Ax is in Q. The function

f(x) =
1

2
‖PQAx−Ax‖22

is convex, differentiable and∇f(x) = AT (I−PQ)Ax isL-Lipschitz forL = ρ(ATA).
We want to minimize the function f(x) over x inC. The CQ algorithm has the iterative
step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
.

The sequence converges to a solution whenever f has a minimum on the set C, for
0 < γ ≤ 2/L.

Intensity Modulated Radiation Therapy
Yair Censor and colleagues modified the CQ algorithm to obtain efficient algo-

rithms for designing protocols for intensity modulated radiation therapy (IMRT).

• Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. “A unified approach for in-
version problems in intensity-modulated radiation therapy.” Physics in Medicine
and Biology 51 (2006), 2353-2365.
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• Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. (2005) “The multiple-sets split
feasibility problem and its application for inverse problems.” Inverse Problems,
21 , pp. 2071-2084.

Orthogonal Projection as Gradient Operators
The operators PC and∇f are fundamental. The functions

f(x) =
1

2
(‖x‖2 − ‖x− PCx‖2)

and
g(x) =

1

2
‖x− PCx‖2

are convex and differentiable. We have

∇f(x) = PCx

and
∇g(x) = x− PCx.

Proximity-Function Minimization
The function

f(x) =
1

I

I∑
i=1

‖x− PCi
x‖2

has the gradient

∇f(x) = x− 1

I

I∑
i=1

PCi
x.

This suggests the iteration

xk =
1

I

I∑
i=1

PCi
xk−1.

Do fixed points exist? Do they solve the CFP?

Operators of Interest
Summarizing, operators of interest to us include

1.
T = PC(I − γ∇f),

2.

T =
1

I

I∑
i=1

PCi
x,

and

3.
T = PCI

PCI−1
· · · PC2PC1 .

4



Strict Contractions

Definition 4. Let (X, d) be a complete metric space. An operator T : X → X is a
strict contraction if there is r in (0, 1) such that

d(Tx, Ty) ≤ r d(x, y),

for all x and y in X .

Theorem 5. (Banach-Picard Theorem) Let T : X → X be a strict contraction. Then
T has a unique fixed point, to which the sequence {T kx0} converges, for all x0.

Contrasts with Banach-Picard

• The operators are not strict contractions;

• There may be multiple fixed points or no fixed points;

• Convergence will occur if a fixed point exists, but not otherwise;

• The limit may depend on the starting vector x0;

• An algorithm typically involves functions and convex sets to be determined in
each application;

• Whether or not fixed points exist will depend on the choice of functions and
convex sets.

Firmly Nonexpansive Operators

Definition 6. An operator N : H → H is nonexpansive (ne) if, for all x and y in H,
we have

‖Nx−Ny‖ ≤ ‖x− y‖.

Definition 7. An operator F : H → H is firmly nonexpansive (fne) if, for all x and y
inH, we have

〈Fx− Fy, x− y〉 ≥ ‖Fx− Fy‖2.

Averaged Operators

Lemma 8. An operator F is fne if and only if there is a ne operator N such that

F =
1

2
I +

1

2
N,

where I is the identity operator.

Definition 9. An operator A : H → H is α-averaged (α-av) if, for some α in the
interval (0, 1), and for some ne operator N , we have

A = (1− α)I + αN.

If A is α-av for some α then A is averaged (av).
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Properties of Averaged Operators

1. All fne operators are av; all av operators are ne.

2. Not all ne operators are convergent.

3. All av operators are convergent (Krasnosel’skii-Mann Theorem).

4. The class of fne operators is not closed to finite products.

5. The class of av operators is closed to finite products.

6. The PC operators are ne gradients of convex functions and are fne;

7. When are other ne gradients of convex functions fne? ALWAYS! (The Baillon–
Haddad Theorem).

The Baillon–Haddad Theorem
The simplest version of the BH Theorem (actually a corollary in Baillon and Had-

dad, 1977) is the following.

Theorem 10. Let f : H → R be convex and Gâteaux differentiable, and T = ∇f .
The following are equivalent:

1. T is nonexpansive;

2. T is firmly nonexpansive.

Bauschke and Combettes (2010) describe the BH theorem as

“a remarkable result that has important applications in optimization” .

A New Baillon–Haddad Theorem (CB, 2014)

Theorem 11. Let f : H → R be convex and Gâteaux differentiable, and let q(x) =
1
2‖x‖

2. The following are equivalent:

1. g(x) = q(x)− f(x) = 1
2‖x‖

2 − f(x) is convex;

2. 1
2‖x− y‖

2 ≥ Df (x, y)
.
= f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 0, for all x and y;

3. Df (x, y) ≥ 1
2‖∇f(x)−∇f(y)‖

2, for all x and y;

4. T = ∇f is firmly nonexpansive;

5. T = ∇f is nonexpansive and f is Fréchet differentiable.
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Characterizing Convexity

Theorem 12. Let g : H → R be Gâteaux differentiable. The following are equivalent:

1. g is convex;

2. for all x and z
g(z) ≥ g(x) + 〈∇g(x), z − x〉;

3. for all x and z
〈∇g(z)−∇g(x), z − x〉 ≥ 0.

Bregman Distances
Let f : H → R be convex and Gâteaux differentiable.

Definition 13. The Bregman distance from x to y is

Df (x, y)
.
= f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 0.

If f is strictly convex, then Df (x, y) = 0 if and only if x = y. From

Df (x, y) +Df (y, x) = 〈∇f(x)−∇f(y), x− y〉

we see how the Bregman distance has a role to play in the definition of firmly nonex-
pansive gradient and the BH Theorem.

1. implies 2.
Because g(x) = 1

2‖x‖
2 − f(x) is convex, we have

g(x) ≥ g(y) + 〈∇g(y), x− y〉,

for all x and y, which is easily shown to be equivalent to

1

2
‖x− y‖2 ≥ f(x)− f(y)− 〈∇f(y), x− y〉 = Df (x, y).

Remark: The Bregman distanceDf does not uniquely determine f ; if we add an affine
linear function to f the Bregman distance is unchanged. This is important in the next
part of the proof.

2. implies 3.
Fix y and define d(x) by

d(x) = Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 0.

Then ∇d(x) = ∇f(x)−∇f(y) and Df (z, x) = Dd(z, x) for all z and x. Therefore,
we have

1

2
‖z − x‖2 ≥ Dd(z, x) = d(z)− d(x)− 〈∇d(x), z − x〉.

Now let z − x = ∇f(y)−∇f(x). Then 3. holds, since d(z) ≥ 0 and

d(x) = Df (x, y) ≥ d(z) +
1

2
‖∇f(x)−∇f(y)‖2.
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3. implies 4.
From 3. we have both

Df (x, y) ≥
1

2
‖∇f(x)−∇f(y)‖2,

and
Df (y, x) ≥

1

2
‖∇f(x)−∇f(y)‖2.

Adding these two inequalities gives

Df (x, y) +Df (y, x) = 〈∇f(x)−∇f(y), x− y〉 ≥ ‖∇f(x)−∇f(y)‖2.

Therefore, ∇f is firmly nonexpansive.

4. implies 5.
Clearly, if ∇f is firmly nonexpansive, then it is also nonexpansive, by Cauchy’s

Inequality. Since∇f is then continuous, f must be Fréchet differentiable.

5. implies 1.
From ∇g(x) = x−∇f(x) we get

〈∇g(x)−∇g(y), x− y〉 = ‖x− y‖2 − 〈∇f(x)−∇f(y), x− y〉

≥ ‖x− y‖(‖x− y‖ − ‖∇f(x)−∇f(y)‖) ≥ 0,

since ∇f is nonexpansive. Therefore, g is convex.

The Fenchel Conjugate
Let f : H → R be convex, lower semi-continuous (closed), and therefore continu-

ous. The affine function h(x) = 〈a, x〉 − γ satisfies h(x) ≤ f(x) for all x if and only
if

γ ≥ 〈a, x〉 − f(x),

for all x. The smallest value of γ for which this is true is f∗(a), the Fenchel conjugate
of f at a, given by

f∗(a) = supx∈H{〈a, x〉 − f(x)}. (1)

The conjugate of f∗ is defined in the obvious way and f∗∗ = f .

Some Examples of the Fenchel Conjugate

• Let f(x) = 1
p‖x‖

p. Then f∗(a) = 1
q‖a‖

q, for 1
p +

1
q = 1.

• Let f(x) = 1
2‖x‖

2. Then f∗(a) = 1
2‖a‖

2.

• Let f(x) = ιB(x), where B ⊆ H is the unit ball and ιB(x) is the indicator
function of B, which is 0 on B and +∞ off of B. Then f∗(a) = ‖a‖2.
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The Fenchel Conjugate of the Gradient
Suppose that a = ∇f(y). Then the sup is attained at x = y. We have

f(x)− f(y) ≥ 〈∇f(y), x− y〉 = 〈a, x− y〉,

so that
〈a, y〉 − f(y) ≥ 〈a, x〉 − f(x)

and
f∗(∇f(y)) + f(y) = 〈∇f(y), y〉.

The Moreau Envelope
The Moreau envelope of the convex function f : H → (−∞,+∞] is the continu-

ous convex function

mf (x) = inf
y∈H
{f(y) + 1

2
‖x− y‖2}. (2)

If f is closed, the infimum is uniquely attained at the point proxf (x).

1. The operator proxf is fne.

2. The Moreau envelope is Fréchet differentiable.

3. ∇mf (x) = x−proxf (x).

4. For f(x) = ιC(x) we have

proxιC (x) = PC(x).

Infimal Convolution
Let f : H → R and g : H → R be arbitrary. Then the infimal convolution of f

and g, written f ⊕ g, is

(f ⊕ g)(x) = inf
y
{f(y) + g(x− y)}. (3)

For convex f and g(x) = q(x) = 1
2‖x‖

2, we have f ⊕ q = mf .

Properties of the Infimal Convolution
Let f and g be functions from H to R. Then (f ⊕ g)∗ = f∗ + g∗. With f convex

and q(x) = 1
2‖x‖

2 = q∗(x) in place of g(x), we have

1. (mf )
∗ = (f ⊕ q)∗ = f∗ + q;

2. mf = f ⊕ q = (f∗ + q)∗; and

3. mf∗ = f∗ ⊕ q = (f + q)∗.
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The BH Theorem of Bauschke and Combettes (2010)

Theorem 14. The following are equivalent:

1. f is Fréchet differentiable and the operator T = ∇f is nonexpansive;

2. g(x) = 1
2‖x‖

2 − f(x) is convex;

3. h(x) = f∗(x)− 1
2‖x‖

2 is convex;

4. f = mh∗ ;

5. ∇f =proxh = I−proxh∗ ;

6. f is Fréchet differentiable and the operator T = ∇f is firmly nonexpansive.

Helpful Identities
The following two identities are easy to prove and are quite helpful. For any oper-

ator T : H → H and G = I − T we have

‖x− y‖2 − ‖Tx− Ty‖2 = 2〈Gx−Gy, x− y〉 − ‖Gx−Gy‖2, (4)

and
〈Tx− Ty, x− y〉 − ‖Tx− Ty‖2 =

〈Gx−Gy, x− y〉 − ‖Gx−Gy‖2. (5)

From (1), if T is ne, then 〈Gx − Gy, x − y〉 ≥ 0, so G is a maximal monotone
operator.

Using the Complementary Operator
If T is ne, then the identity in (4) shows how to express this property of T in terms

of a property of G = I − T . Similarly, the identity in (5) shows that T is fne if and
only if G = I − T is fne.

Definition 15. An operator G : H → H is ν-inverse strongly monotone (ν-ism), for
some ν > 0, if, for all x and y inH,

〈Gx−Gy, x− y〉 ≥ ν‖Gx−Gy‖2.

Properties of T and G

1. T is ne if and only if G is ν-ism for ν = 1
2 ;

2. T is α-av if and only if G is ν-ism for ν = 1
2α , for some 0 < α < 1;

3. T is fne if and only if G is ν-ism for ν = 1.

4. T is fne if and only if G is fne;

5. If G is ν-ism and 0 < µ ≤ ν, then G is µ-ism.

6. If G is ν-ism and γ > 0 then γG is ν
γ -ism.
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The Krasnosel’skii-Mann Theorem

Theorem 16. Let A : H → H be α-averaged, for some α ∈ (0, 1). Then A is
convergent.

Proof: Let H be RN and Az = z. The identity in Equation (4) is the key to the proof.
Using Az = z and (I −A)z = 0 and setting G = I −A we have

||z − xk||2 − ||z − xk+1||2 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||2.

Since G is 1
2α -ism, we have

||z − xk||2 − ||z − xk+1||2 ≥ (
1

α
− 1)||xk − xk+1||2.

The Proof, Continued
Consequently, the sequence {||z−xk||} is decreasing, the sequence {xk} is bounded,

and {||xk − xk+1||} converges to zero. Let x∗ be a cluster point of {xk}. Then we
have Tx∗ = x∗, so we may use x∗ in place of the arbitrary fixed point z. It follows
then that the sequence {||x∗ − xk||} is decreasing. Since a subsequence converges to
zero, the entire sequence converges to zero.

Using the Baillon–Haddad (BH) Theorem
Let f : H → R be convex and Gâteaux differentiable, and the gradient of f L-

Lipschitz continuous, that is,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Then

• the gradient of g = 1
Lf is ne, so∇g is fne and 1-ism;

• for any 0 < γ < 2
L the operator γ∇f = γL∇g is ν = 1

γL -ism;

• I − γ∇f is averaged;

• the operator PC(I − γ∇f) is averaged. Therefore,

xk+1 = PC(x
k − γ∇f(xk))

converges weakly to a minimizer of f over C, if such minimizers exist.

Some Definitions and Propositions
Now we present some of the fundamental definitions and propositions in convex

analysis. It is useful to allow the value +∞, as, for example, in the definition of the
indicator function of a set C; we take ιC(x) = 0 for x in C and ιC(x) = +∞ for
x not in C. Then ιC is a convex function whenever C is a convex set, whereas the
characteristic function of C, defined by χC(x) = 1, for x in C, and χC(x) = 0, for x
not in C, is not convex.
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Some Definitions

• The domain of a function f : H → [−∞,+∞] is the set

dom(f) = {x|f(x) < +∞}.

• A function f : H → [−∞,+∞] is proper if there is no x with f(x) = −∞ and
some x with f(x) finite.

• A function f : H → [−∞,+∞] is lower semi-continuous (lsc) or closed if

f(x) = lim inf
y→x

f(y).

• The epigraph of f : H → [−∞,+∞] is the set

epi(f) = {(x, γ)|f(x) ≤ γ}.

Some Propositions

Proposition 0.1. A function f : H → [−∞,+∞] is lsc (or closed) if and only if
epi(f) is closed, and convex if and only if epi(f) is convex. If f is convex, then dom(f)
is convex.

Proposition 0.2. If f : H → [−∞,+∞] is proper and convex, and either f is lsc or
H is finite-dimensional, then f is continuous in the interior of dom(f).

Corollary 17. If f : H → R is lsc and convex, then f is continuous. If H is finite-
dimensional and f is convex, then f is continuous.

The Subdifferential
We shall restrict our attention to functions f : H → R, although most of the results

we present are valid, with some restrictions, for proper functions.

Definition 18. The subdifferential at x of the function f is the set

∂f(x) = {u|f(y) ≥ f(x) + 〈u, y − x〉 , for all y}.

Proposition 0.3. A function f : H → R is closed and convex if and only if ∂f(x) is
nonempty, for all x.

Corollary 19. Let H be finite-dimensional. A function f : H → R is convex if and
only if ∂f(x) is nonempty, for all x.

Proposition 0.4. Let f : H → R and g : H → R be closed and convex. Then, for all
x,

∂(f + g)(x) = ∂f(x) + ∂g(x).
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Differentiability

Proposition 0.5. Let f : H → R be convex and Gâteaux differentiable. Then the
operator ∇f is strong-to-weak continuous. IfH is finite-dimensional, then ∇f is con-
tinuous and f is Fréchet differentiable.

The Convex Case
Generally, a function f : H → R can be Gâteaux differentiable at x, but ∂f(x)

can be empty; we need not have ∇f(x) in ∂f(x). However, we do have the following
proposition.

Proposition 0.6. Let f : H → R be convex. Then f is Gâteaux differentiable at x if
and only if ∂f(x) = {u}, in which case u = ∇f(x).

Corollary 20. Let f : H → R and g : H → R be closed and convex. If f + g is
Gâteaux differentiable at x, then so are f and g.

More Properties
Let f : H → R be closed and convex. The following hold:

1. mf = q − (f + q)∗;

2. mf +mf∗ = q; and

3. proxf + proxf∗ = I.

Some Propositions
Let f : H → R be closed and convex, q(x) = 1

2‖x‖
2, g(x) = q(x) − f(x), and

h(x) = f∗(x)− q(x).

1. If g is convex, then so is h.

2. If h is convex, then f = mh∗ .

The End
THE END
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