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Abstract

We denote by H a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖.
We say that an operator T : H → H is convergent if, for every starting vector
x0, the sequence {xk} defined by xk = Txk−1 converges weakly to a fixed point
of T , whenever T has a fixed point. Fixed-point iterative methods are used
to solve a variety of problems by selecting a convergent T for which the fixed
points of T are solutions of the original problem. It is important, therefore, to
identify properties of an operator T that guarantee that T is convergent.

An operator T : H → H is nonexpansive if, for all x and y in H,

‖Tx− Ty‖ ≤ ‖x− y‖.

Just being nonexpansive does not make T convergent, as the example T = −I
shows; here I is the identity operator. It doesn’t take much, however, to convert
a nonexpansive operator N into a convergent operator. Let 0 < α < 1 and
T = (1 − α)I + αN ; then T is convergent. Such operators are called averaged
and are convergent as a consequence of the Krasnosel’skii-Mann Theorem.

The Baillon–Haddad Theorem provides an important link between convex
optimization and fixed-point iteration. If f : H → R is a Gâteaux differentiable
convex function and its gradient is L-Lipschitz continuous, that is,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,

for all x and y, then f is Fréchet differentiable and the gradient operator of the
function g = 1

Lf is nonexpansive. By the Baillon–Haddad Theorem the gradient
operator of g is firmly nonexpansive. It follows that, for any 0 < γ < 2

L , the
operator I − γ∇f is averaged, and therefore convergent. The class of averaged
operators is closed to finite products, and PC , the orthogonal projection onto a
closed convex set C, is firmly nonexpansive. Therefore, the projected gradient-
descent algorithm with the iterative step

xk+1 = PC(xk − γ∇f(xk))

converges weakly to a minimizer, over C, of the function f , whenever such
minimizers exist.
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1 Overview

The Baillon–Haddad Theorem, described by Bauschke and Combettes [4] as “a re-

markable result that has important applications in optimization” , first appeared in a

1977 paper [2] as a corollary to a theorem on cyclically monotone operators on Hilbert

space. Since then several variants of the BH Theorem have appeared in the literature

[11, 4, 5]. The first elementary proof of the BH Theorem will be published this year

[8].

In order to place the BH Theorem in context, we begin with fixed-point itera-

tion, convergent operators, averaged operators, and the Krasnosel’skii-Mann Theo-

rem. Then we give the elementary proof of the BH Theorem and discuss its impor-

tance for iterative optimization.

We then turn to an interesting version of the BH Theorem due to Bauschke and

Combettes [4]. A certain amount of background must be presented first, since their

theorem involves several notions, such as Fenchel conjugation and Moreau envelopes,

that may not be famliar to most readers. Their theorem asserts the equivalence of

several conditions. Their proof is relatively short, because some of the equivalences

were already known. In no sense, however, is their proof elementary.

2 Fixed-Point Iteration and Convergent Operators

2.1 Convergent Operators

We denote by H a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We say

that an operator T : H → H is convergent if, for every starting vector x0, the sequence

{xk} defined by xk = Txk−1 converges weakly to a fixed point of T , whenever T has a

fixed point. Fixed-point iterative methods are used to solve a variety of problems by

selecting a convergent T for which the fixed points of T are solutions of the original

problem. It is important, therefore, to identify properties of an operator T that

guarantee that T is convergent.

2.2 Firmly Nonexpansive Operators

We are interested in operators T that are convergent. For such operators we often

find that ‖xk+1 − xk‖ ≤ ‖xk − xk−1‖ for each k. This leads us to the definition of

nonexpansive operators.
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Definition 2.1 An operator T on H is nonexpansive (ne) if, for all x and y, we have

‖Tx− Ty‖ ≤ ‖x− y‖.

Nonexpansive operators need not be convergent, as the ne operator T = −I illus-

trates.

Let C be a nonempty, closed, convex subset of H. For every x ∈ H there is a

unique member of C, denoted PCx, that is closest to x in C. The operators T = PC

are nonexpansive. In fact, the operators PC have a much stronger property; they are

firmly nonexpansive.

Definition 2.2 An operator T on H is firmly nonexpansive (fne) if, for every x and

y, we have

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2.

If T is fne then T is convergent. The class of fne operators is smaller than the class of

ne operators and does yield convergent iterative sequences. However, the product or

composition of two or more fne operators need not be fne, which limits the usefulness

of this class of operators. Even the product of PC1 and PC2 need not be fne. We need

to find a class of convergent operators that is closed to finite products.

2.3 Averaged Operators

It can be shown easily that an operator F is fne if and only if there is a nonexpansive

operator N such that

F =
1

2
I +

1

2
N.

Definition 2.3 An operator A : H → H is α-averaged (α-av) if there is a nonex-

pansive operator N such that

A = (1− α)I + αN,

for some α in the interval (0, 1). If A is α-av for some α then A is an averaged (av)

operator.

All averaged operators are nonexpansive, all firmly nonexpansive operators are

averaged, the class of averaged operators is closed to finite products, and averaged

operators are convergent. In other words, the class of averaged operators is precisely

the class that we are looking for.
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2.4 Useful Properties of Operators on H

It turns out that properties of an operator T are often more easily studied in terms

of properties of its complement, G = I − T . The following two identities are easy to

prove and are quite helpful. For any operator T : H → H and G = I − T we have

‖x− y‖2 − ‖Tx− Ty‖2 = 2〈Gx−Gy, x− y〉 − ‖Gx−Gy‖2, (2.1)

and

〈Tx− Ty, x− y〉 − ‖Tx− Ty‖2 = 〈Gx−Gy, x− y〉 − ‖Gx−Gy‖2. (2.2)

Definition 2.4 An operator G : H → H is ν-inverse strongly monotone (ν-ism) for

some ν > 0 if

〈Gx−Gy, x− y〉 ≥ ν‖Gx−Gy‖2,

for all x and y.

Clearly, if G is ν-ism then γG is ν
γ
-ism. Using the two identities in (2.1) and (2.2) it

is easy to prove the following theorem.

Theorem 2.1 Let T : H → H be arbitrary and G = I − T . Then

1. T is ne if and only if G is ν-ism for ν = 1
2
;

2. T is α-av if and only if G is ν-ism for ν = 1
2α

, for some 0 < α < 1;

3. T is fne if and only if G is ν-ism for ν = 1.

4. T is fne if and only if G is fne;

5. If G is ν-ism and 0 < µ ≤ ν, then G is µ-ism.

3 The Krasnosel’skii-Mann Theorem

For any operator T : H → H that is averaged, weak convergence of the sequence

{T kx0} to a fixed point of T , whenever Fix(T ), the set of fixed points of T , is

nonempty, is guaranteed by the Krasnosel’skii-Mann (KM) Theorem [12, 14]. The

proof we present here is for the case of H = RN ; the proof is a bit more complicated

for the infinite-dimensional case (see Theorem 5.14 in [5]).

Theorem 3.1 Let T : RN → RN be α-averaged, for some α ∈ (0, 1). Then, for any

x0, the sequence {T kx0} converges to a fixed point of T , whenever Fix(T ) is nonempty.
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Proof: Let z be a fixed point of T . The identity in Equation (2.1) is the key to

proving Theorem 3.1.

Using Tz = z and (I − T )z = 0 and setting G = I − T we have

||z − xk||2 − ||Tz − xk+1||2 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||2.

Since G is 1
2α

-ism, we have

||z − xk||2 − ||z − xk+1||2 ≥ (
1

α
− 1)||xk − xk+1||2.

Consequently, the sequence {||z − xk||} is decreasing, the sequence {xk} is bounded,

and the sequence {||xk − xk+1||} converges to zero. Let x∗ be a cluster point of {xk}.
Then we have Tx∗ = x∗, so we may use x∗ in place of the arbitrary fixed point z.

It follows then that the sequence {||x∗ − xk||} is decreasing. Since a subsequence

converges to zero, the entire sequence converges to zero.

4 Some Definitions and Propositions

In this section we present some of the fundamental definitions and propositions in

convex analysis.

4.1 Using Infinity

In the most general case f is a function on H taking values in [−∞,+∞]. Usually,

the value −∞ is not allowed, although it can occur naturally when the function f

is defined as the pointwise infimum of a family of functions. On the other hand, it

is useful to allow the value +∞, as, for example, in the definition of the indicator

function of a set C; we take ιC(x) = 0 for x in C and ιC(x) = +∞ for x not in C.

Then ιC is a convex function whenever C is a convex set, whereas the characteristic

function of C, defined by χC(x) = 1, for x in C, and χC(x) = 0, for x not in C, is

not convex.

Definition 4.1 The domain of a function f : H → [−∞,+∞] is the set

dom(f) = {x|f(x) < +∞}.

Definition 4.2 A function f : H → [−∞,+∞] is proper if there is no x with

f(x) = −∞ and some x with f(x) finite.
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Definition 4.3 A function f : H → [−∞,+∞] is lower semi-continuous (lsc) or

closed if

f(x) = lim inf
y→x

f(y).

Definition 4.4 The points of continuity of f : H → [−∞,+∞] is the set cont(f).

Definition 4.5 The epigraph of f : H → [−∞,+∞] is the set

epi(f) = {(x, γ)|f(x) ≤ γ}.

Proposition 4.1 A function f : H → [−∞,+∞] is lsc (or closed) if and only if

epi(f) is closed, and convex if and only if epi(f) is convex. If f is convex, then

dom(f) is convex.

Proposition 4.2 If f : H → [−∞,+∞] is proper and convex, and either f is lsc or

H is finite-dimensional, then cont(f) is the interior of dom(f).

Corollary 4.1 If f : H → R is lsc and convex, then f is continuous. If H is finite-

dimensional and f is convex, then f is continuous.

4.2 Differentiability

For the remainder of this section we shall restrict our attention to functions f : H →
R, although most of the results we present are valid, with some restrictions, for proper

functions.

Definition 4.6 The subdifferential at x of the function f is the set

∂f(x) = {u|f(y) ≥ f(x) + 〈u, y − x〉 , for all y}.

Proposition 4.3 A function f : H → R is closed and convex if and only if ∂f(x) is

nonempty, for all x.

Corollary 4.2 Let H be finite-dimensional. A function f : H → R is convex if and

only if ∂f(x) is nonempty, for all x.

Proposition 4.4 Let f : H → R and g : H → R be closed and convex. Then, for all

x,

∂(f + g)(x) = ∂f(x) + ∂g(x).
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Definition 4.7 A function f : H → R is Gâteaux differentiable at x if there is a

vector ∇f(x) such that, for every x and d, the directional derivative of f at x, in the

direction d, is given by 〈∇f(x), d〉. The function f is Gâteaux differentiable, or just

differentiable, if f is Gâteaux differentiable at each x.

Proposition 4.5 Let f : H → R be convex and Gâteaux differentiable. Then the

operator ∇f is strong-to-weak continuous. If H is finite-dimensional, then ∇f is

continuous and f is Fréchet differentiable.

Generally, a function f : H → R can be Gâteaux differentiable at x, but ∂f(x)

can be empty; we need not have ∇f(x) in ∂f(x). However, we do have the following

proposition.

Proposition 4.6 Let f : H → R be convex. Then f is Gâteaux differentiable at x if

and only if ∂f(x) = {u}, in which case u = ∇f(x).

Corollary 4.3 Let f : H → R and g : H → R be closed and convex. If f + g is

Gâteaux differentiable at x, then so are f and g.

5 The Baillon–Haddad Theorem

The Baillon–Haddad Theorem (BH Theorem) [2, 4] provides one of the most impor-

tant links between fixed-point methods and iterative optimization. The proof we give

here is new [8]. It is the first elementary proof of this theorem and depends only on

basic properties of convex functions. The non-elementary proof of this theorem in

[11] was repeated in the book [7]. The proof given here and in [8] is closely related

to that given in the book [9].

Our proof of the BH Theorem relies solely on the following fundamental theorem

on convex differentiable functions.

Theorem 5.1 Let f : H → R be differentiable. The following are equivalent:

1. f(x) is convex;

2. for all a and b we have

f(b) ≥ f(a) + 〈∇f(a), b− a〉 ; (5.3)

3. for all a and b we have

〈∇f(b)−∇f(a), b− a〉 ≥ 0. (5.4)
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Definition 5.1 Let f : H → R be convex and differentiable. The Bregman distance

associated with f is Df (x, y) given by

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉.

Then Df (x, y) ≥ 0, and Df (x, x) = 0. If f is strictly convex, then Df (x, y) = 0 if

and only if x = y.

Theorem 5.2 (A Generalized Baillon–Haddad Theorem [8]) Let f : H → R
be convex and differentiable, and let q(x) = 1

2
‖x‖2. The following are equivalent:

1. g = q − f is convex;

2. 1
2
‖x− y‖2 ≥ Df (x, y) for all x and y;

3. Df (x, y) ≥ 1
2
‖∇f(x)−∇f(y)‖2, for all x and y;

4. T = ∇f is firmly nonexpansive;

5. T = ∇f is nonexpansive and f is Fréchet differentiable.

Proof:

• (1. implies 2.) Because g is convex, we have

g(x) ≥ g(y) + 〈∇g(y), x− y〉,

for all x and y, which is easily shown to be equivalent to

1

2
‖x− y‖2 ≥ f(x)− f(y)− 〈∇f(y), x− y〉 = Df (x, y).

• (2. implies 3.) Fix y and define d(x) by

d(x) = Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 0.

Then

∇d(x) = ∇f(x)−∇f(y)

and Df (z, x) = Dd(z, x) for all z and x. Therefore, we have

1

2
‖z − x‖2 ≥ Dd(z, x) = d(z)− d(x)− 〈∇d(x), z − x〉.

Now let z − x = ∇f(y)−∇f(x), so that

d(x) = Df (x, y) ≥ 1

2
‖∇f(x)−∇f(y)‖2.
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• (3. implies 4.) Similarly,

Df (y, x) ≥ 1

2
‖∇f(x)−∇f(y)‖2.

Adding these two inequalities gives

〈∇f(x)−∇f(y), x− y〉 ≥ ‖∇f(x)−∇f(y)‖2.

• (4. implies 5.) Clearly, if ∇f is firmly nonexpansive, it is also nonexpansive.

Since it is then continuous, f must be Fréchet differentiable.

• (5. implies 1.) From ∇g(x) = x−∇f(x) we get

〈∇g(x)−∇g(y), x− y〉 = ‖x− y‖2 − 〈∇f(x)−∇f(y), x− y〉

≥ ‖x− y‖(‖x− y‖ − ‖∇f(x)−∇f(y)‖) ≥ 0.

Therefore, g is convex.

6 Using the BH Theorem

As was mentioned previously, the Baillon–Haddad Theorem plays an important role

in linking fixed-point algorithms to optimization. Suppose that f : H → R is convex

and differentiable, and its gradient, ∇f , is L-Lipschitz continuous, that is,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Then the gradient of the function g = 1
L
f is ne. By the BH Theorem ∇g is fne, and

therefore ν-ism for ν = 1. For any γ in the interval (0, 2
L

) the operator

γ∇f = (γL)
1

L
∇g

is ν-ism for ν = 1
γL

. Therefore, I − γ∇f is α-av for α = γL
2

. For γ in the interval

(0, 2
L

) the operator T = I − γ∇f is averaged, and therefore is convergent.

The orthogonal projection operators PC are fne, and therefore averaged. Since

the class of averaged operators is closed to finite products, the operator PC(I−γ∇f)

is averaged. The projected gradient descent algorithm, with the iterative step defined

by

xk+1 = PC(xk − γ∇f(xk)),

converges to a minimizer of the function f , over the set C, whenever such minimizers

exist.
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7 An Extended BH Theorem: Preliminaries

In [4] Bauschke and Combettes extend the Baillon–Haddad Theorem to include sev-

eral other equivalent conditions. These additional conditions involve definitions such

as of the Moreau envelope and the Fenchel conjugate, and rely on results that are

not elementary. We review these concepts first, and then present their extended

Baillon–Haddad Theorem.

7.1 The Fenchel Conjugate

The affine function h(x) = 〈a, x〉 − γ satisfies h(x) ≤ f(x) for all x if and only if

γ ≥ 〈a, x〉− f(x), for all x. The smallest value of γ for which this is true is γ = f ∗(a)

defined below.

We let f : H :→ (−∞,+∞] be proper. The conjugate of the function f is the

function f ∗ given by

f ∗(a) = supx∈H{〈a, x〉 − f(x)}. (7.5)

The conjugate of f ∗ is defined in the obvious way. The function f is lower semi-

continuous, or closed, if and only if f ∗∗ = f .

7.2 The Moreau Envelope

The Moreau envelope of the function f : H → (−∞,∞] is the continuous convex

function

mf (x) = envf (x) = inf
y∈H
{f(y) +

1

2
‖x− y‖2}. (7.6)

Proposition 7.1 If f is closed, proper, and convex, the infimum in (7.6) is uniquely

attained.

Proof: From Proposition 12.15 of [5] we know that a minimizer exists. We prove

only the uniqueness here. For simplicity, we suppose that f is Gâteaux differentiable.

Then y = p minimizes f(y) + 1
2
‖x − y‖2 if and only if 0 = p +∇f(p) − x. Suppose,

therefore, that there are two minimizers, p and r, so that

x = p+∇f(p) = r +∇f(r).

Then p = r, since

0 ≤ 〈∇f(p)−∇f(r), p− r〉 = 〈r − p, p− r〉 = −‖p− r‖2.
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If f is not differentiable, then Proposition 7.1 is still true; the proof then involves

the (necessarily nonempty) subdifferentials of the function f .

Proposition 7.2 The operator T = proxf is firmly nonexpansive.

Proof: For simplicity, we again assume that f is Gâteaux differentiable. Now let

p = proxf (x) and q = proxf (y). From x = p+∇f(p) and y = q +∇f(q) we obtain

0 ≤ 〈∇f(p)−∇f(q), p− q〉 = 〈x− p+ q − y, p− q〉 = 〈p− q, x− y〉 − ‖p− q‖2.

Proposition 7.3 The Moreau envelope mf (x) = envf (x) is Fréchet differentiable

and

∇mf (x) = x− proxf (x). (7.7)

Proof: See Proposition 12.29 of [5].

7.3 Infimal Convolution

Let f : H → R and g : H → R be arbitrary. Then the infimal convolution of f and

g, written f ⊕ g, is

(f ⊕ g)(x) = inf
y
{f(y) + g(x− y)}; (7.8)

see Lucet [13] for details. Using g(x) = q(x) = 1
2
‖x‖2, we have f ⊕ q = mf .

Proposition 7.4 Let f and g be functions from H to R. Then we have (f ⊕ g)∗ =

f ∗ + g∗.

Proof: Select a ∈ H. Then

(f ⊕ g)∗(a) = sup
x

(
〈a, x〉 − inf

y
{f(y) + g(x− y)}

)

= sup
y

(
〈y, a〉 − f(y) + sup

x
{〈x− y, a〉 − g(x− y)}

)
= f ∗(a) + g∗(a).
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Corollary 7.1 With q(x) = 1
2
‖x‖2 = q∗(x) in place of g(x), we have

1. (mf )
∗ = (f ⊕ q)∗ = f ∗ + q;

2. mf = f ⊕ q = (f ∗ + q)∗; and

3. mf∗ = f ∗ ⊕ q = (f + q)∗.

Proposition 7.5 Let f : H → R be closed and convex. The following hold:

1. mf = q − (f + q)∗;

2. mf +mf∗ = q; and

3. proxf + proxf∗ = I.

Proof: First we prove 1. For any x ∈ H we have

mf (x) = inf
y
{f(y) + q(x− y)} = inf

y
{f(y) + q(x) + q(y)− 〈x, y〉}

= q(x)− sup
y
{〈x, y〉 − f(y)− q(y)} = q(x)− (f + q)∗(x).

Assertion 2. then follows from the previous corollary, and we get Assertion 3. by

taking gradients.

Proposition 7.6 Let f : H → R be closed and convex, q(x) = 1
2
‖x‖2, g(x) =

q(x)− f(x), and h(x) = f ∗(x)− q(x). If g is convex, then so is h.

Proof: We have

f(x) = q(x)− g(x) = q(x)− g∗∗(x) = q(x)− sup
u
{〈u, x〉 − g∗(u)}

= inf
u
{q(x)− 〈u, x〉+ g∗(u)}.

Therefore

f ∗(a) = sup
x

sup
u
{〈a, x〉+ 〈u, x〉 − q(x)− g∗(u)}

so

f ∗(a) = sup
u
{q∗(a+ u)− g∗(u)}.

From

q∗(a+ u) =
1

2
‖a+ u‖2 =

1

2
‖a‖2 + 〈a, u〉+

1

2
‖u‖2,
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we get

f ∗(a) =
1

2
‖a‖2 + (g∗ − q)∗(a),

or

h(a) = f ∗(a)− 1

2
‖a‖2 = (g∗ − q)(a) = sup

x
{〈a, x〉 − g∗(x) + q(x)},

which is the supremum of a family of affine functions in the variable a, and so is

convex.

Proposition 7.7 Let f : H → R be closed and convex, q(x) = 1
2
‖x‖2, and h(x) =

f ∗(x)− q(x). If h is convex, then f = mh∗.

Proof: From h = f ∗ − q we get f ∗ = h+ q, so that

f = f ∗∗ = (h+ q)∗ = h∗ ⊕ q = mh∗ .

8 The Extended Baillon–Haddad Theorem

Now we are in a position to consider the extended Baillon–Haddad Theorem of

Bauschke and Combettes. To avoid technicalities, we present a slightly simplified

version of the theorem in [4, 5].

Theorem 8.1 Let f : H → R be closed and convex, q(x) = 1
2
‖x‖2, g(x) = q(x) −

f(x), and h(x) = f ∗(x)− q(x). The following are equivalent:

1. f is Fréchet differentiable and the operator T = ∇f is nonexpansive;

2. g is convex;

3. h is convex;

4. f = mh∗;

5. ∇f = proxh = I − proxh∗;

6. f is Fréchet differentiable and the operator T = ∇f is firmly nonexpansive.

Proof: Showing 1. implies 2. was done previously, in the earlier version of the

Baillon–Haddad Theorem. To show that 2. implies 3. use Proposition 7.6. Assuming

3., we get 4. using Proposition 7.7. Then to get 4. implies 5. we use Proposition 7.3
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and Proposition 7.5. Finally, we assume 5. and get 6. from Proposition 7.2 and the

continuity of ∇f .

As the authors of [4] noted, their proof was new and shorter than those found in the

literature up to that time, since several of the equivalences they employ were already

established by others. The equivalence of conditions 2., 3., and 4. was established in

[15]. The equivalence of conditions 1., 3., 4., and 6. was shown in Euclidean spaces

in [16], Proposition 12.60, using different techniques.
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