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Abstract

The recently presented sequential unconstrained minimization algorithm
SUMMA is extended to provide a framework for the derivation of block-iterative,
or partial-gradient, optimization methods. This BI-SUMMA includes, and is
motivated by, block-iterative versions of the algebraic reconstruction technique
(ART) and its multiplicative variant, the MART. The BI-SUMMA approach
is designed to provide computationally tractable and quickly convergent al-
gorithms. The rescaled block-iterative expectation maximization maximum
likelihood method (RBI-EMML) is closely related to the RBI-MART, but is
not a particular case of BI-SUMMA. My papers are available as pdf files at
http://faculty.uml.edu/cbyrne/cbyrne.html .

1 Introduction

In recent years, image reconstruction has provided fertile ground for the development

of iterative algorithms; this has been particularly true with regard to medical imaging.

The algebraic reconstruction technique (ART) and its multiplicative version, MART

[35], the expectation maximization maximum likelihood method (EMML) [48, 43, 52,

42], and the simultaneous and block-iterative MART [47, 28, 22] are just some of the

iterative algorithms initially introduced within the medical imaging context. Each

of these algorithms can be viewed as providing exact or approximate solutions to

systems of linear equations, perhaps with side constraints, such as positivity.

1.1 Medical Image Reconstruction

The reconstruction of images from tomographic data obtained from actual patients

poses its own unique challenges, not the least of which is to generate accurate images
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in a timely fashion. The systems of equations that arise in such areas as transmission

and emission tomography are extremely large, the data is noisy, and the mathematical

modeling of the scanning process is not as exact as one might wish it to be. The

algorithms used must be sufficiently flexible to incorporate the physics of the scanning

process, which effectively means that the algorithms must be iterative. These iterative

algorithms must either converge rapidly, or, at least, provide useful reconstructions

within a few iterations. Not only should few iterations suffice, but each iteration

should be relatively inexpensive. Block-iterative algorithms seem to be the methods

of choice at the present time.

1.2 The EMML Algorithm for SPECT

In single photon emission computed tomography (SPECT) [53], the values yi are the

number of photons detected at the ith detector, for i = 1, ..., I. These data are

viewed as realizations of independent Poisson random variables, with mean values

(Px)i =
∑J

j=1 Pijxj, for each i. Here xj is the unknown expected number of photons

emitted, within the scanning time, from the jth pixel in the body, and Pij is the

probability that a photon emitted from the jth pixel will be detected at the ith

detector. The EMML algorithm has the iterative step

xk
j = xk−1

j s−1
j

I∑
i=1

Pij

( yi

(Pxk−1)i

)
, (1.1)

where sj =
∑I

i=1 Pij > 0. For every positive starting vector x0, the sequence {xk}
converges to a non-negative vector maximizing the likelihood function for the model

of independent Poisson counts.

The EMML algorithm is flexible, in that it permits the geometry of the scanner

and the patient-specific attenuation to be incorporated in the choice of the Pij, and

the Poisson model for the emission conforms with the physics of the situation. How-

ever, it is slow to converge, each step of the iteration can be expensive, particularly

when I is large, and when the data is noisy, which is the usual case, the image that

maximizes likelihood is often not useful (see Appendix B). Stopping the iteration

after a few passes, or some other form of regularization, can lead to useful images,

but accelerating the algorithm is also important.

1.3 Block-Iterative EMML

The paper of Holte, Schmidlin, et al. [38] compares the performance of Schmidlin’s

method of [47] with the EMML algorithm. Almost as an aside, they notice the accel-
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erating effect of what they call projection interleaving, that is, the use of blocks. This

paper contains no explicit formulas, however, and presents no theory, so one can only

make educated guesses as to the actual iterative methods employed. Somewhat later,

it was noticed that useful images could be obtained quickly if, in the implementation

of the EMML algorithm, the summation was performed only over those i in a subset,

or block, of the detector indices; then a new block was selected and the process re-

peated. This ordered-subset (OSEM) method [39, 40] quickly became the algorithm

of choice, at first, for researchers, and a bit later, for the clinic.

The absence of a solid mathematical foundation for the OSEM led several groups

to reexamine other block-iterative methods, particularly BI-MART, the block-iterative

version of MART [28, 22]. Unlike the OSEM, the BI-MART always converges to a

non-negative solution of the system y = Px, whenever there is a non-negative solu-

tion, regardless of how the blocks are selected. This suggested that the OSEM is not

the correct block-iterative version of the EMML. This problem was resolved with the

appearance, in 1996, of RAMLA [9] and the rescaled BI-EMML (RBI-EMML) [11].

Block-iterative methods do not necessarily converge faster than simultaneous ones

that use all the equations at each step. The block-iterative methods do provide the

opportunity for a rescaling of the equations, which, as we shall see, does lead to

significant acceleration of the algorithms.

1.4 Overview

Our main goal in this paper is to provide a framework for the design of block-iterative

algorithms. Recently, a sequential unconstrained minimization algorithm (SUMMA)

[20] was proposed for the derivation of iterative algorithms for constrained optimiza-

tion. The SUMMA, which is more like a template for algorithms rather than a single

algorithm, can also be used to provide computationally tractable iterative methods

and to incorporate regularization. In this paper we investigate the expansion of

the SUMMA approach to a block-iterative SUMMA (BI-SUMMA) that encompasses

block-iterative methods.

We begin with a review of block-iterative versions of ART, MART and the EMML.

The convergence proofs of BI-ART and BI-MART will also serve to motivate the

BI-SUMMA. We discuss briefly the SUMMA framework, and then proceed to the

derivation of the BI-SUMMA.
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2 Notation

We let A be an I by J matrix with complex entries, A† its conjugate transpose, b an

arbitrary vector in CI , Q = A†A, P an I by J matrix with non-negative entries and

sj =
∑I

i=1 Pij > 0, for j = 1, ..., J , and y a vector in RI with positive entries. For

i = 1, ..., I, we let ai denote the ith column of the matrix A†. We denote by X the

subset of RJ consisting of all non-negative vectors x for which Px is a positive vector.

For a positive integer N with 1 ≤ N ≤ I, we let B1, ..., BN be a partition of the

set {i = 1, ..., I}, with In the cardinality of Bn; the subsets Bn are called blocks. We

then let An be the matrix and bn the vector obtained from A and b, respectively, by

removing all the rows except for those whose index i is in the set Bn. For each n, we

let Ln = ρ(A†
nAn) be the spectral radius, or largest eigenvalue, of the matrix A†

nAn

and we let L = ρ(A†A).

Similarly, we let Pn be the matrix and yn the vector obtained from P and y,

respectively, by removing all the rows except for those whose index i is in the set Bn.

For each n and j, we let

snj =
∑

i∈Bn

Pij,

mn = max{snj, j = 1, ..., J},

and

µn = max{snjs
−1
j , j = 1, ..., J}.

When N = 1, snj = sj, so µ = µn = 1 and

m = mn = max{sj, j = 1, ..., J}.

When N = I, and n = i, snj = Pij, so

µi = µn = max{Pijs
−1
j , j = 1, ..., J},

and

mi = mn = max{Pij, j = 1, ..., J}.

We say that the system Ax = b is consistent if it has solutions x, and Px = y is

consistent if it has solutions x whose entries are all non-negative. The norm ||x|| is

the Euclidean norm.

The Kullback-Leibler (KL) or cross-entropy distance [41] between positive num-

bers α and β is

KL(α, β) = α log
α

β
+ β − α.
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We also define KL(α, 0) = +∞ and KL(0, β) = β. Extending to non-negative vectors

a = (a1, ..., aJ)T and b = (b1, ..., bJ)T , we have

KL(a, b) =
J∑

j=1

KL(aj, bj) =
J∑

j=1

(
aj log

aj

bj

+ bj − aj

)
.

With a+ =
∑J

j=1 aj, and b+ > 0, we have

KL(a, b) = KL(a+, b+) + KL(a,
a+

b+

b). (2.1)

For each i, let

Hi = {x |(Ax)i = bi},

and

H+
i = {x ≥ 0|(Px)i = yi}.

The orthogonal projection of x onto the hyperplane Hi is

Ri(x) = x− 1

||ai||2
((Ax)i − bi)a

i.

3 The Block-Iterative ART

We begin with BI-ART, the block-iterative version of the algebraic reconstruction

technique (ART).

3.1 The BI-ART Iteration

For k = 1, 2, ..., n = k(mod N) and the parameters γn > 0 appropriately chosen, the

iterative step of the block-iterative ART (BI-ART) is

xk = xk−1 − γnA
†
n(Anx

k−1 − bn). (3.1)

3.2 Convergence of BI-ART

For appropriately chosen γn, the BI-ART algorithm converges, in the consistent case,

for any choice of blocks, and any starting vector x0.

Theorem 3.1 Let 0 < γn ≤ L−1
n . If the system Ax = b is consistent, then the

BI-ART sequence {xk} converges to the solution minimizing ||x− x0||.
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Proof: Let Ax̂ = b. For each k let

Gk(x) =
1

2
||Anx− bn||2 +

1

2γn

||x− xk−1||2 − 1

2
||Anx− Anx

k−1||2. (3.2)

The restriction on γn yields the inequality

1

2γn

||x− xk−1||2 − 1

2
||Anx− Anx

k−1||2 ≥ 0, (3.3)

and so Gk(x) ≥ 0, for all x. The vector xk given by Equation (3.1) minimizes Gk(x)

and it is easily seen that

Gk(x)−Gk(x
k) =

1

2γn

||x− xk||2. (3.4)

Now we can write Gk(x̂) two ways. First, from the definition, we have

Gk(x̂) =
1

2γn

||x̂− xk−1||2 − 1

2
||bn − Anx

k−1||2. (3.5)

Second, from Equation (3.4), we have

Gk(x̂) = Gk(x
k) +

1

2γn

||x̂− xk||2. (3.6)

Therefore,

||x̂− xk−1||2 − ||x̂− xk||2 = 2γnGk(x
k) + γn||bn − Anx

k−1||2, (3.7)

from which we draw several conclusions:

• the sequence {||x̂− xk||} is decreasing;

• the sequence {Gk(x
k)} converges to zero; and

• the sequence {||xk − xk−1||} converges to zero.

In addition, for fixed n = 1, ..., N and m →∞,

• the sequence {||bn − Anx
mN+n−1||} converges to zero;

• the sequence {||Anx
mN+n − bn||} converges to zero; and

• the sequence {xmN+n} is bounded.
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Let x∗,1 be a cluster point of the sequence {xmN+1}; then there is subsequence

{xmrN+1} converging to x∗,1. The sequence {xmrN+2} is also bounded, and we

select a cluster point x∗,2. Continuing in this fashion, we obtain cluster points

x∗,n, for n = 1, ..., N . From the conclusions reached previously, we can show that

x∗,n = x∗,n+1 = x∗, for n = 1, 2, ..., N − 1, and Ax∗ = b. Replacing the generic

solution x̂ with the solution x∗, we see that the sequence {||x∗ − xk||} is decreasing.

But, subsequences of this sequence converge to zero, so the entire sequence converges

to zero, and so xk → x∗.

Finally, since the right side of the equation

||x̂− xk−1||2 − ||x̂− xk||2 = 2γnGk(x
k) + γn||bn − Anx

k−1||2

does not depend on which solution x̂ we are using, neither does the left side. Summing

over the index k on both sides, we find that

||x̂− x0||2 − ||x̂− x∗||2

does not depend on which solution x̂ we are using. Therefore, minimizing ||x̂ − x0||
over all solutions x̂ is equivalent to minimizing ||x̂−x∗|| over all solutions x̂, for which

the answer is clearly x̂ = x∗.

When the matrix A is normalized so that ||ai|| = 1 for each i, then

Ln = ρ(A†
nAn) = ρ(AnA

†
n) ≤ trace (AnA

†
n) = In.

Therefore, the choice of γn = 1/In is acceptable and the resulting BI-ART iterative

step becomes

xk =
1

In

∑
i∈Bn

Ri(x
k−1). (3.8)

We turn now to two examples of BI-ART, the ART and Landweber’s algorithm.

3.3 The ART

We suppose now that N = I and Bn = Bi = {i}, for i = 1, ..., I. Let i = k(mod I).

The iterative step of the ART is

xk = xk−1 − γi((Axk−1)i − bi)a
i. (3.9)

We know from Theorem 3.1 that, for 0 < γi ≤ 1
||ai||2 , the ART sequence converges, in

the consistent case, to the solution closest to x0. If we take γi = 1
||ai||2 , then the ART

iterative step is

xk = Ri(x
k−1). (3.10)
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3.4 The Landweber Algorithm

We suppose now that N = 1, so that B1 = {i = 1, ..., I}. The iterative step of

Landweber’s algorithm is

xk = xk−1 − γA†(Axk−1 − b). (3.11)

We know from Theorem 3.1 that, in the consistent case, for 0 < γ ≤ 1
L
, the Landweber

sequence converges to the solution closest to x0.

More can be said about the Landweber algorithm. Using the Krasnoselskii-Mann

Theorem (see Appendix A), it can be shown that the Landweber sequence converges

to the least-squares solution closest to x0, for 0 < γ < 2
L
.

In the inconsistent case, if N > 1, the BI-ART will not converge to a least-squares

solution, but instead, will exhibit subsequential convergence to a limit cycle consisting

of (typically) N distinct vectors.

When the matrix A has been normalized so that ||ai|| = 1, for all i, we have L ≤ I.

If we then take the acceptable choice of γ = 1/I, the Landweber iterative step is that

of the Cimmino algorithm [25], and we have

xk =
1

I

I∑
i=1

Ri(x
k−1). (3.12)

3.5 Why use BI-ART?

For large systems of equations, it may be more efficient to use a block of equations at

each step of the iteration, rather than all the equations, or just a single equation. We

may also be able to accelerate convergence to a solution using BI-ART, if unfortunate

ordering of the blocks is avoided. From the iterative step of BI-ART, we can write

||x̂− xk−1||22 − ||x̂− xk||22

= 2γnRe〈x̂− xk−1, A†
n(bn − Anx

k−1)〉 − γ2
n||A†

n(bn − Anx
k−1)||22

= 2γn||bn − Anx
k−1||22 − γ2

n||A†
n(bn − Anx

k−1)||22.

Therefore, we have

||x̂− xk−1||22 − ||x̂− xk||22 ≥ (2γn − γ2
nLn)||bn − Anx

k−1||22. (3.13)

From this Inequality (3.13), we see that we make progress toward a solution to

the extent that the right side of the inequality,

(2γn − γ2
nLn)||bn − Anx

k−1||22
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is large. One conclusion we draw from this is that we want to avoid ordering the blocks

so that the quantity ||bn − Anx
k−1||22 is small. We also want to select γn reasonably

large, subject to the bound γn < 2/Ln; the maximum of 2γn − γ2
nLn is at γn = L−1

n .

If we have normalized the matrix A so that the rows of An have length one, then the

trace of A†
nAn is In, the number of rows in An. Since Ln is not greater than this trace,

we have Ln ≤ In, so the choice of γn = 1/In in BI-ART is acceptable, but possibly far

from optimal, particularly if An is sparse. The choice of γ = 1/I in the Landweber

algorithm is Cimmino’s algorithm for the normalized case.

Inequality (3.13) can be used to give a rough measure of the speed of convergence

of BI-ART. The term ||bn−Anx
k−1||22 is on the order of In, while the term 2γn−γ2

nLn

has 1/Ln for its maximum, so, very roughly, is on the order of 1/In. Consequently,

the improvement made in one step of BI-ART is on the order of one. One complete

cycle of BI-ART, that is, one complete pass through all the blocks, then corresponds

to an improvement on the order of N , the number of blocks. It is a “rule of thumb”

that block-iterative methods are capable of improving the speed of convergence by a

factor of the number of blocks, if unfortunate ordering of the blocks and selection of

the equations within the blocks are avoided, and the parameters are well chosen.

To obtain good choices for the γn , we need to have a good estimate of Ln. Such

estimates are available for sparse matrices.

3.6 An Upper Bound for the Singular Values of A

When A is not too large, finding ρ(A†A) poses no significant problem, but, for many

of our applications, A is large. Even calculating A†A, not to mention finding its

eigenvalues, is expensive in those cases. We would like a good estimate of ρ(A†A)

that can be obtained from A itself. The upper bounds for ρ(A†A) we present here

apply to any matrix A, but will be particularly helpful when A is sparse, that is, most

of its entries are zero.

For each i and j, let eij = 1, if Aij is not zero, and eij = 0, if Aij = 0. Let

0 < νi =
√∑J

j=1 |Aij|2, σj =
∑I

i=1 eijν
2
i , and σ be the maximum of the σj.

Theorem 3.2 ([15]) No eigenvalue of A†A exceeds σ.

Proof: Let A†Av = cv, for some non-zero vector v and scalar c. With w = Av, we

have

w†AA†w = cw†w.
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Then ∣∣∣ I∑
i=1

Aijwi

∣∣∣2 =
∣∣∣ I∑

i=1

Aijeijνi
wi

νi

∣∣∣2
≤

( I∑
i=1

|Aij|2
|wi|2

ν2
i

)( I∑
i=1

ν2
i eij

)

=
( I∑

i=1

|Aij|2
|wi|2

ν2
i

)
σj ≤ σ

( I∑
i=1

|Aij|2
|wi|2

ν2
i

)
.

Therefore, we have

cw†w = w†AA†w =
J∑

j=1

∣∣∣ I∑
i=1

Aijwi

∣∣∣2

≤ σ
J∑

j=1

( I∑
i=1

|Aij|2
|wi|2

ν2
i

)
= σ

I∑
i=1

|wi|2 = σw†w.

We conclude that c ≤ σ.

Corollary 3.1 Let the rows of A have Euclidean length one. Then no eigenvalue of

A†A exceeds the maximum number of non-zero entries in any column of A.

Proof: We have ν2
i =

∑J
j=1 |Aij|2 = 1, for each i, so that σj is the number of non-zero

entries in the jth column of A, and σ is the maximum of the σj.

3.7 Using Sparseness

Let each of the rows of the matrix A have length one. Let τnj be the number of

non-zero elements in the jth column of An, and let τn be the maximum of the τnj.

We know then that Ln ≤ τn. Therefore, we can choose γn < 2/τn.

Suppose, for the sake of illustration, that each column of A has τ non-zero ele-

ments, for some τ < I, and we let r = τ/I. Suppose also that In = I/N and that

N is not too large. Then τn is approximately equal to rIn = τ/N . On the other

hand, unless An has only zero entries, we know that τn ≥ 1. Therefore, it is no

help to select N for which τ/N < 1. For a given measure of sparseness τ we need

not select N greater than τ . The sparser the matrix A, the fewer blocks we need to

gain the maximum advantage from the rescaling, and the more we can benefit from

parallelizability in the calculations at each step of the BI-ART.

4 The Block-Iterative MART

We turn now to the block-iterative version of the multiplicative algebraic reconstruc-

tion technique (MART). These iterative methods are used to find non-negative solu-

tions to non-negative systems of the form y = Px.
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4.1 The BI-MART Iteration

For k = 1, 2, ..., and n = k(mod N), the iterative step of of the block-iterative MART

(BI-MART) is described by

log xk
j = log xk−1

j − γnδj

∑
i∈Bn

Pij log
((Pxk−1)i

yi

)
. (4.1)

4.2 Convergence of BI-MART

For appropriately chosen γn and δj, the BI-MART algorithm converges, in the con-

sistent case, for any choice of blocks, and any starting vector x0.

Theorem 4.1 Let 0 < snjγnδj ≤ 1. If the system Px = y is consistent, then the

BI-MART sequence {xk} converges to the non-negative solution in X minimizing

J∑
j=1

δ−1
j KL(xj, x

0
j),

for any choice of blocks and any x0 > 0.

Proof: Let Px̂ = y, for some non-negative vector x̂. For each k and any x in X , let

Gk(x) = KL(Pnx, yn) +
1

γn

J∑
j=1

δ−1
j KL(xj, x

k−1
j )−KL(Pnx, Pnx

k−1). (4.2)

Using the Equation (2.1), we see that the restriction on γn and δj yields the inequality

1

γn

J∑
j=1

δ−1
j KL(xj, x

k−1
j )−KL(Pnx, Pnx

k−1) ≥ 0 (4.3)

and so Gk(x) ≥ 0, for all non-negative x. The vector xk given by Equation (4.1)

minimizes Gk(x) over all non-negative x and it is easily seen that

Gk(x)−Gk(x
k) =

1

γn

J∑
j=1

δ−1
j KL(xj, x

k
j ). (4.4)

Now we can write Gk(x̂) two ways. First, from the definition, we have

Gk(x̂) =
1

γn

J∑
j=1

δ−1
j KL(x̂j, x

k−1
j )−KL(yn, Pnx

k−1). (4.5)

Second, from Equation (4.4), we have

Gk(x̂) = Gk(x
k) +

1

γn

J∑
j=1

δ−1
j KL(x̂j, x

k
j ). (4.6)

11



Therefore,

J∑
j=1

δ−1
j KL(x̂j, x

k−1
j )−

J∑
j=1

δ−1
j KL(x̂j, x

k
j ) = γn

[
Gk(x

k) + KL(yn, Pnx
k−1)

]
, (4.7)

from which we draw several conclusions:

• the sequence {∑J
j=1 δ−1

j KL(x̂j, x
k
j )} is decreasing;

• the sequence {Gk(x
k)} converges to zero; and

• the sequence {∑J
j=1 δ−1

j KL(xk
j , x

k−1
j )} converges to zero.

In addition, we also learn that, for fixed n = 1, 2, ..., N and m →∞,

• the sequence {KL(yn, Pnx
mN+n−1)} converges to zero;

• the sequence {KL(Pnx
mN+n, yn)} converges to zero; and

• the sequence {xmN+n} is bounded.

Let x∗,1 be a cluster point of the sequence {xmN+1}; then there is subsequence

{xmrN+1} converging to x∗,1. The sequence {xmrN+2} is also bounded, and we

select a cluster point x∗,2. Continuing in this fashion, we obtain cluster points

x∗,n, for n = 1, ..., N . From the conclusions reached previously, we can show that

x∗,n = x∗,n+1 = x∗, for n = 1, 2, ..., N − 1, and Px∗ = y. Replacing the generic

solution x̂ with the solution x∗, we see that the sequence {∑J
j=1 δ−1

j KL(x∗j , x
k
j )} is de-

creasing. But, subsequences of this sequence converge to zero, so the entire sequence

converges to zero, and so xk → x∗.

Finally, since the right side of the equation

J∑
j=1

δ−1
j KL(x̂j, x

k−1
j )−

J∑
j=1

δ−1
j KL(x̂j, x

k
j ) = γn

[
Gk(x

k) + KL(yn, Pnx
k−1)

]

does not depend on which solution x̂ we are using, neither does the left side. Summing

over the index k on both sides, we find that

J∑
j=1

δ−1
j KL(x̂j, x

0
j)−

J∑
j=1

δ−1
j KL(x̂j, x

∗
j)

does not depend on which solution x̂ we are using. Therefore, minimizing the distance∑J
j=1 δ−1

j KL(x̂j, x
0
j) over all solutions x̂ is equivalent to minimizing

∑J
j=1 δ−1

j KL(x̂j, x
∗
j)

over all solutions x̂, for which the answer is clearly x̂ = x∗.

12



There are two frequently used choices for the parameters γn and δj. If we choose

δj = 1, for each j, then we must select γn so that

0 < γn ≤ m−1
n ,

while, if we select δj = s−1
j , then

0 < γn ≤ µ−1
n .

The rescaled BI-MART (RBI-MART or RBI-SMART) uses the largest permissible

value of γn in either case.

We turn now to two examples of BI-MART, the MART and the simultaneous

MART (SMART)

4.3 The MART

We suppose now that N = I and Bn = Bi = {i}, for i = 1, ..., I. Let i = k(mod I).

The iterative step of the MART is

xk
j = xk−1

j

( yi

(Pxk−1)i

)δjγiPij

. (4.8)

We know from Theorem 4.1 that, for 0 < Pijδjγi ≤ 1, the MART sequence converges,

in the consistent case, to the solution x minimizing
∑J

j=1 δ−1
j KL(xj, x

0
j). A common

choice for the parameters is to select δj = 1 and

γi = m−1
i .

4.4 The SMART

We suppose now that N = 1, so that B1 = {i = 1, ..., I}. The iterative step of the

SMART is described by

log xk
j = log xk−1

j − γδj

I∑
i=1

Pij log
((Pxk−1)i

yi

)
. (4.9)

We know from Theorem 4.1 that, in the consistent case, for 0 < sjδjγ ≤ 1, the

SMART sequence converges to the non-negative solution x in X minimizing

J∑
j=1

δ−1
j KL(xj, x

0
j).

Common choices for the parameters are δj = s−1
j and γ = 1. Another choice would

be δj = 1 and γ = m−1, where m = max{sj |j = 1, ..., J}.
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More can be said about the SMART. It can be shown [10] that, in the inconsistent

case, the SMART sequence converges to an approximate solution, the unique non-

negative minimizer x ∈ X of KL(Px, y) that minimizes
∑J

j=1 δ−1
j KL(xj, x

0
j). The

night sky theorem given there shows that, if P and every matrix obtained from P

by removing columns have full rank, then, in the inconsistent case, there is a subset

S of the set {j = 1, ..., J} with cardinality at most I − 1, such that every non-

negative minimizer of KL(Px, y) is supported on S (see Appendix B). Consequently,

the minimizer is unique. If J is much larger than I, then, in the inconsistent case,

the non-negative x minimizing KL(Px, y) will have many zero values. This poses a

problem when x is a vectorized image, because these zero values tend to be scattered

throughout the image, making it unusable.

In the inconsistent case, if N > 1, the BI-MART will not converge to an approxi-

mate solution, but instead, always exhibits subsequential convergence to a limit cycle

consisting of (typically) N distinct vectors, although no proof of this is known.

4.5 Why use BI-MART?

As with the BI-ART, it may be more efficient to use a block of equations at each

step of the iteration, rather than all of them, or just a single one. The SMART can

be slow to converge, prompting the search for accelerated versions. The BI-MART

does not necessarily converge faster than the SMART algorithm, even with a good

choice of the ordering of the blocks. The key to accelerating convergence now is the

selection of the parameters δj and γn.

With the acceptable choice of δj = s−1
j and γn = 1 the BI-MART iteration is

described by

log xk
j = log xk−1

j − s−1
j

∑
i∈Bn

Pij log
((Pxk−1)i

yi

)
. (4.10)

so that

log xk
j = (1− s−1

j snj) log xk−1
j +

(
s−1

j

∑
i∈Bn

Pij log [xk−1
j

yi

(Pxk−1)i

]
)
. (4.11)

From Equation (4.11) we see that the BI-MART involves relaxation, in which log xk
j

includes some fraction of the current log xk−1
j . This fraction can be unnecessarily

large, and the BI-MART algorithm can be accelerated by rescaling.

With the choice of δj = s−1
j , the iterative step of the rescaled BI-MART (RBI-

MART or RBI-SMART) is

log xk
j = (1− µ−1

n s−1
j snj) log xk−1

j +
(
µ−1

n s−1
j

∑
i∈Bn

Pij log [xk−1
j

yi

(Pxk−1)i

]
)
.
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(4.12)

With the choice δj = 1, the iterative step of RBI-SMART is

log xk
j = (1−m−1

n snj) log xk−1
j +

(
m−1

n

∑
i∈Bn

Pij log [xk−1
j

yi

(Pxk−1)i

]
)
.

(4.13)

In general, the RBI-SMART uses the parameters γn that are as large as possible,

subject to the constraints

snjγnδj ≤ 1.

Simulation studies have shown that this rescaling can accelerate convergence by

roughly a factor of N .

When N = I and each block Bn = Bi = {i}, the RBI-SMART for the choice

δj = s−1
j has the iterative step

xk
j = xk−1

j exp
(
µ−1

i s−1
j Pij log

yi

(Pxk−1)i

)
, (4.14)

so that

xk
j = xk−1

j

( yi

(Pxk−1)i

)µ−1
i s−1

j Pij

. (4.15)

For the choice δJ = 1, the RBI-SMART has the iterative step

xk
j = xk−1

j exp
(
m−1

i Pij log
yi

(Pxk−1)i

)
, (4.16)

so that

xk
j = xk−1

j

( yi

(Pxk−1)i

)m−1
i Pij

. (4.17)

In general, this rescaled MART (RMART) algorithm uses the largest values of γi

consistent with the constraints

Pijδjγi ≤ 1.

5 The Block-Iterative EMML Algorithm

The expectation maximization maximum likelihood (EMML) algorithm we discuss

now was first applied to emission tomographic image reconstruction [48]. In that

application the entry xj of the vector x is the unknown mean number of photons

emitted from pixel j during the scan time, yi is the number of photons detected at
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the ith detector, and Pij is the probability that a photon emitted at j will be detected

at i. The quantity sj is the probability that a photon emitted at j will be detected. It

is assumed that the counts yi are realizations of independent Poisson random variables

with means (Px)i. Maximizing the likelihood function with respect to the unknown

parameters xj ≥ 0 is equivalent to finding a non-negative minimizer of the function

KL(y, Px). As with the SMART, the EMML algorithm is usually slow to converge.

5.1 The EMML Algorithm

The expectation maximization (EM) method, as it applies to this problem, is called

the EMML algorithm, or sometimes the MLEM algorithm. It has the iterative step

xk
j = xk−1

j s−1
j

I∑
i=1

Pij

( yi

(Pxk−1)i

)
. (5.1)

It is interesting to compare this iteration with that of SMART:

xk
j = xk−1

j exp
[
s−1

j

I∑
i=1

Pij log
( yi

(Pxk−1)i

)]
. (5.2)

We have the following result concerning the EMML algorithm.

Theorem 5.1 The EMML sequence {xk} converges to a non-negative minimizer of

KL(y, Px), for any choice of x0 > 0.

It is an open question to which minimizer the EMML sequence converges. In the

consistent case, the limit is a non-negative solution of y = Px. If there are multiple

non-negative solutions of y = Px, the limit will depend on x0 > 0, but we do not

know how it depends on x0.

It was noticed that convergence could sometimes be significantly accelerated by

summing over only some of the equations at a time [38, 39]. This ordered-subset

approach (OSEM) has the iterative step

xk
j = xk−1

j s−1
nj

∑
i∈Bn

Pij

( yi

(Pxk−1)i

)
. (5.3)

However, the OSEM appears to be inadequate, in certain respects.

Convergence of the OSEM, in the consistent case, was proven only when the blocks

(or ‘subsets’) exhibit subset balance; that is, the quantities snj are independent of the

index n. In addition, the OSEM can fail to converge, in the consistent case, if subset

balance is missing. Also, for the case of singleton blocks, the OSEM simply gives a

sequence of vectors all parallel to the original x0. Clearly, if there is a block-iterative

variant of EMML, the OSEM is not it.
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5.2 KL Projection onto Hyperplanes

As we have seen, the iterative step of the unrelaxed ART is to take as the next xk

the orthogonal projection of the current xk−1 onto the hyperplane determined by the

current ith equation. The Landweber algorithm, for normalized A and the choice

γ = 1/I, is Cimmino’s algorithm, and xk is the arithmetic mean of the orthogonal

projections of xk−1 onto the hyperplanes determined by each of the equations. Each

step of the BI-ART involves the arithmetic means of some of these projections. The

key to formulating the proper block-iterative variants of EMML is to consider gen-

eralized projections onto hyperplanes, involving the KL distance, and to mimic the

BI-ART situation.

The KL projection of a given z ≥ 0 onto H+
i is the vector x in H+

i that minimizes

KL(x, z), over all x in H+
i . We cannot generally compute this projection in closed

form. However, suppose we want the vector in H+
i that minimizes the weighted KL

distance
J∑

j=1

PijKL(xj, zj)

over all x in H+
i ; we denote this weighted projection of z by Qi(z). Then the La-

grangian is

L(x) =
J∑

j=1

PijKL(xj, zj) + λ(
J∑

j=1

Pijxj − yi).

Then setting the gradient of L(x) to zero, we have

0 = Pij log
(xj

zj

)
+ λPij.

Then, for those j such that Pij 6= 0, we have xj = αzj, for some constant α > 0.

Since (Px)i = yi, it follows that α = yi/(Pz)i, and the weighted projection of z onto

H+
i is

xj = Qi(z)j = zj

( yi

(Pz)i

)
.

Consequently, once we have xk−1, the weighted projection onto H+
i is

Qi(x
k−1)j = xk−1

j

( yi

(Pxk−1)i

)
.

This gives us some insight into what is going on with the SMART, BI-MART and

the EMML and suggests how we might mimic BI-MART to get BI-EMML.
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5.3 Geometric and Arithmetic Averages of Projections

We can describe the SMART iterative step as

log xk
j =

I∑
i=1

s−1
j Pij log

(
Qi(x

k−1)j

)
;

that is, xk
j is a weighted geometric mean of all the weighted KL projections of xk−1.

Similarly, we can write the EMML iterative step as

xk
j =

I∑
i=1

s−1
j PijQi(x

k−1)j,

which shows that xk
j is a weighted arithmetic mean of the same weighted KL projec-

tions.

We can describe the MART iteration as

log xk
j = (1− γiδjPij) log xk−1

j + γiδjPij log Qi(x
k−1)j,

and the BI-MART as

log xk
j = (1− γnδjsnj) log xk−1

j + γnδj

∑
i∈Bn

Pij log Qi(x
k−1)j.

So we see that, in both MART and the more general BI-MART, we have a weighted

geometric mean of some of the KL projections, along with the previous xk−1. Now we

can see how to extend the EMML to block-iterative versions: we replace the weighted

geometric means with weighted arithmetic means.

5.4 The Block-Iterative EMML

The block-iterative EMML (BI-EMML) has the iterative step

xk
j = (1− γnδjsnj)x

k−1
j + γnδj

∑
i∈Bn

PijQi(x
k−1)j, (5.4)

with γ > 0 chosen so that

snjδjγn ≤ 1.

The rescaled BI-EMML (RBI-EMML) uses the largest values of γn consistent with

these constraints.

The analogue of the MART is the EMART, with the iterative step

xk
j = (1− γiδjPij)x

k−1
j + γiδjPijQi(x

k−1)j, (5.5)

with Pijδjγi ≤ 1. We have the following result concerning the BI-EMML.
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Theorem 5.2 When the system y = Px is consistent, the BI-EMML sequence {xk}
converges to a non-negative solution of y = Px, for any choice of blocks and any

x0 > 0.

The inequality in the following lemma is the basis for the convergence proof.

Lemma 5.1 Let y = Px for some nonnegative x. Then for {xk} as in Equation

(5.4) we have

J∑
j=1

δ−1
j KL(xj, x

k−1
j )−

J∑
j=1

δ−1
j KL(xj, x

k
j ) ≥ (5.6)

γn

∑
i∈Bn

KL(yi, (Pxk)i). (5.7)

Proof: From the iterative step

xk
j = xk−1

j (1− δjγnσnj) + xk
j δjγn

∑
i∈Bn

Pij
yi

(Pxk)i

(5.8)

we have

log(xk
j /x

k−1
j ) = log

(
(1− δjγnσnj) + δjγn

∑
i∈Bn

Pij
yi

(Pxk)i

)
. (5.9)

By the concavity of the logarithm we obtain the inequality

log(xk
j /x

k−1
j ) ≥

(
(1− δjγnσnj) log 1 + δjγn

∑
i∈Bn

Pij log
yi

(Pxk)i

)
,

(5.10)

or

log(xk
j /x

k−1
j ) ≥ δjγn

∑
i∈Bn

Pij log
yi

(Pxk)i

. (5.11)

Therefore

J∑
j=1

δ−1
j xj log(xk+1

j /xk
j ) ≥ γn

∑
i∈Bn

(
J∑

j=1

xjPij) log
yi

(Pxk)i

. (5.12)

Also

J∑
j=1

δ−1
j (xk

j − xk−1
j ) = γn

∑
i∈Bn

((Pxk)i − yi). (5.13)

This concludes the proof of the lemma.

From the inequality in (5.7) we can conclude several things:
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• the sequence {∑J
j=1 δ−1

j KL(xj, x
k
j )} is decreasing;

• the sequence {xk} is therefore bounded; and

• the sequence {∑i∈Bn
KL(yi, (PxmN+n−1)i)} is converging to zero.

Let x∗ be any cluster point of the sequence {x}. Then it is not difficult to show that

y = Px∗. Replacing x with x∗ we have that the sequence {∑J
j=1 δ−1

j KL(x∗j , x
k
j )} is

decreasing; since a subsequence converges to zero, so does the whole sequence. There-

fore x∗ is the limit of the sequence {xk}. This proves that the algorithm produces a

nonnegative solution of y = Px. We have been unable, so far, to replace the inequal-

ity in (5.7) with an equation in which the right side is independent of the particular

solution x chosen. Therefore, in contrast with the BI-MART, we do not know which

solution the BI-EMML gives us, how the solution depends on the starting vector x0,

nor how the solution may depend on the choice of blocks.

The behavior of BI-EMML illustrates once again that using block-iterative meth-

ods does not, by itself, lead to faster convergence. It seems that the main advantage

of the use of these block-iterative methods is the opportunity to select the parame-

ters. As with BI-MART, the key to accelerating the convergence of BI-EMML is the

proper choice of the parameters γn and δj. Recall that we must have

γnδjsnj ≤ 1,

for all n and j. When we select δj = s−1
j , we must then have γn ≤ µ−1

n . When we

have δj = 1, we need γn ≤ m−1
n . Generally speaking, the larger the γn the faster the

convergence. The rescaled BI-EMML (RBI-EMML) uses the largest acceptable value

of the γn.

5.5 The RAMLA

We must mention a method that closely resembles the EMART, the row-action maxi-

mum likelihood algorithm (RAMLA), which was discovered independently by Browne

and De Pierro [9]. The RAMLA avoids the limit cycle in the inconsistent case by us-

ing strong underrelaxation involving a decreasing sequence of relaxation parameters

λk. The RAMLA is the following:

Algorithm 5.1 (RAMLA) Let x0 be an arbitrary positive vector, and n = k(mod N).

Let the positive relaxation parameters λk converge to zero, with
∑+∞

k=0 λk = +∞. Then,

xk
j = (1− λksnj)x

k−1
j + λkx

k−1
j

∑
i∈Bn

Pij

( yi

(Pxk−1)i

)
. (5.14)
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5.6 Generalized Subset Balance

We say that generalized subset balance (GSB) holds if, for each n and j, we have

snj = cntj,

for some constants cn and tj; if cn = c, for all n, then subset balance (SB) holds.

In [39, 40] convergence of the OSEM to a non-negative solution of y = Px was

established, provided that such solutions exist and SB holds.

As we noted previously, when applied to tomographic problems, the OSEM usually

provides useful reconstructed images quickly. This is not because the OSEM uses

blocks, but because the OSEM is a particular case of the RBI-EMML when GSB

holds. To see this, notice that, when GSB holds, we have snj = µnsj. With the

choice of δj = s−1
j , and γn = µ−1

n , we have

1− γnδjsnj = 0,

so that the right side of Equation (5.4) has only a single term and it is the same as

the right side of Equation (5.3). Notice also that if we choose δj = 1 instead, we do

not get OSEM, but a relaxed version of OSEM.

6 Sequential Unconstrained Minimization

The sequential unconstrained minimization algorithm (SUMMA) presented in [20] is

really a framework for the design of iterative algorithms, rather than a particular

algorithm. It can be used to derive iterative algorithms that perform constrained

minimization, as well as computationally tractable unconstrained optimization meth-

ods. The SUMMA contains, as particular cases, methods for constrained optimiza-

tion, such as the well known barrier- and penalty-function methods, and proximal

minimization techniques, and the Landweber algorithm and the SMART.

In this section we review the SUMMA and extend it to include regularization

methods for the Landweber algorithm and the SMART. In the following section, we

generalize the SUMMA to obtain block-iterative algorithms, including the BI-ART

and BI-MART.

6.1 The SUMMA

The objective is to minimize the function f(x) : RJ → R, possibly subject to the

constraint that x lie within the closed convex set C. We shall assume that the problem
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has solutions and denote an arbitrary solution by x̂. For k = 1, 2, ..., we minimize the

function

Gk(x) = f(x) + gk(x) (6.1)

to get the vector xk. The auxiliary functions gk(x) are assumed to satisfy the inequal-

ities

0 ≤ gk+1(x) ≤ Gk(x)−Gk(x
k). (6.2)

It follows that

0 = gk(x
k−1) ≤ gk(x).

In [20] this iterative framework was applied to the constrained problem, where it was

called the SUMMA, for sequential unconstrained minimization.

In the constrained case, we assume that the functions gk(x) are defined and finite

on the open, convex set D, that C is the closure of D, and that each xk lies in D.

Being able to solve for the xk at each step is an important issue, and we shall address

it later in this paper.

The basic result concerning SUMMA is convergence in function value; specifically,

we have the following theorem [20].

Theorem 6.1 The sequence {f(xk)} converges to f(x̂).

We consider now several examples of SUMMA.

6.2 Examples of SUMMA

The well known barrier- and penalty-function methods for constrained optimization

[32] are particular cases of SUMMA, as are proximity-function methods of Teboulle

[51] and Censor and Zenios [23], the Landweber algorithm, and the SMART.

6.2.1 Barrier-Function Methods

The objective is to minimize the function f(x) : RJ → R over x in C, the closure

of the open set D. We choose a barrier function b(x) ≥ 0 that is finite on D and

(typically) approaches +∞ at the boundary of D. At each step, we minimize the

function

f(x) +
1

k
b(x)
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to get xk, which we assume lies within D [32]. Equivalently, we can minimize the

function

kf(x) + b(x).

To put the barrier-function method within the SUMMA framework, we define

Gk(x) = f(x) + (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1); (6.3)

and

gk(x) = (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1). (6.4)

Clearly, the vector xk minimizes Gk(x).

6.2.2 Penalty-Function Methods

Again, the objective is to minimize the function f(x) : RJ → R over x in C. We

select a penalty function p(x) ≥ 0 having the property that p(x) = 0 if and only if

x ∈ C. At each step of the algorithm we minimize the function

f(x) + kp(x)

to get xk. Equivalently, we can get xk by minimizing the function

p(x) +
1

k
f(x);

this problem has the form of a barrier-function method, so can be included within

the SUMMA framework.

6.2.3 Proximal Minimization

One example of the SUMMA is the proximal minimization algorithm (PMA), in which,

at each step, we minimize the function

Gk(x) = f(x) + Dh(x, xk−1) (6.5)

to get xk [23, 14]. The function

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉

is the Bregman distance from x to z; we assume that h is finite, convex and differen-

tiable on the set D and that f(x) is convex. It is easy to see that

Gk(x)−Gk(x
k) = Df (x, xk) + Dh(x, xk) ≥ Dh(x, xk) = gk+1(x).
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The equation to be solved for xk is then

0 = ∇f(xk) +∇h(xk)−∇h(xk−1). (6.6)

Notice that the SUMMA approach does not always guarantee that it will be a simple

matter to calculate each xk. Two other examples will illustrate this point.

6.2.4 The Landweber Algorithm as SUMMA

The Gk(x) we use for the Landweber algorithm appeared in the convergence proof of

BI-ART. It is

Gk(x) =
1

2
||Ax− b||2 +

1

2γ
||x− xk−1||2 − 1

2
||Ax− Axk−1||2. (6.7)

Although this choice of Gk(x) does provide an xk that is easy to calculate, the choice

does seem quite ad hoc. Let’s consider one more example, before we attempt to make

this choice of Gk(x) more plausible.

6.2.5 The SMART as SUMMA

The Gk(x) we need for SMART has also already appeared, in the proof of BI-MART.

It is

Gk(x) = KL(Px, y) +
1

γ

J∑
j=1

δ−1
j KL(xj, x

k−1
j )−KL(Px, Pxk−1). (6.8)

Once again, this choice is a fortunate one, in that it makes xk easy to calculate,

but certainly seems ad hoc. To make these two choices plausible, we return to the

proximal minimization approach.

6.2.6 A Modified PMA

Suppose that, instead of using the Gk(x) given by Equation (6.5), we use

Gk(x) = f(x) + Dh(x, xk−1)−Df (x, xk−1), (6.9)

with the assumption that h is chosen so that

Dh(x, z)−Df (x, z) ≥ 0,

for all appropriate x and z. The equation to be solved for xk is now

0 = ∇h(xk)−∇h(xk−1) +∇f(xk−1). (6.10)

24



What may potentially make this equation easier to solve than Equation (6.6) is that

we choose the function h.

In the Landweber case, the function h is

h(x) =
1

2γ
||x||2,

while in the SMART case the function h(x) is

h(x) =
1

γ

J∑
j=1

xj(log xj)− xj.

In both cases, we were able to solve Equation (6.10) and get xk in closed form.

We can use the modified PMA approach to impose upper and lower bounds on

solutions to y = Px.

6.2.7 Incorporating Upper and Lower Bounds

Let aj < bj, for each j. Let Xab be the set of all vectors x such that aj ≤ xj ≤ bj, for

each j. Now, we seek to minimize f(x) = KL(Px, y), over all vectors x in X ∩ Xab.

We let

h(x) =
J∑

j=1

(
(xj − aj) log(xj − aj) + (bj − xj) log(bj − xj)

)
. (6.11)

Then we have

Dh(x, z) =
J∑

j=1

(
KL(xj − aj, zj − aj) + KL(bj − xj, bj − zj)

)
, (6.12)

and, as before,

Df (x, z) = KL(Px, Pz). (6.13)

Lemma 6.1 For any c > 0, with a ≥ c and b ≥ c, we have KL(a − c, b − c) ≥
KL(a, b).

Proof: Let g(c) = KL(a− c, b− c) and differentiate with respect to c, to obtain

g′(c) =
a− c

b− c
− 1− log(

a− c

b− c
) ≥ 0. (6.14)

We see then that the function g(c) is increasing with c.

As a corollary of Lemma 6.1, we have
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Lemma 6.2 Let a = (a1, ..., aJ)T , and x and z in X with (Px)i ≥ (Pa)i, (Pz)i ≥
(Pa)i, for each i. Then KL(Px, Pz) ≤ KL(Px− Pa, Pz − Pa).

Lemma 6.3 Dh(x, z) ≥ Df (x, z).

Proof: We can easily show that

Dh(x, z) ≥ KL(Px− Pa, Pz − Pa) + KL(Pb− Px, Pb− Pz),

along the lines used previously. Then, from Lemma 6.2, we have KL(Px−Pa, Pz−
Pa) ≥ KL(Px, Pz) = Df (x, z).

At the kth step of this algorithm we minimize the function

f(x) + Dh(x, xk−1)−Df (x, xk−1) (6.15)

to get xk.

Solving for xk
j , we obtain

xk+1
j = αk

j aj + (1− αk
j )bj, (6.16)

where

(αk
j )

−1 = 1 +
(xk−1

j − aj

bj − xk−1
j

)
exp

( I∑
i=1

Pij log(yi/(Pxk−1)i)
)
. (6.17)

Since the restriction of f(x) to X ∩ Xab has bounded level sets, the sequence {xk} is

bounded and has cluster points. If x̂ is unique, then {xk} → x̂. This algorithm is

closely related to those presented in [13]. In [46] we used the modified PMA to obtain

an iterative image reconstruction algorithm from fan-beam transmission tomographic

data. That algorithm included upper and lower bounds, as well as regularization.

Now we consider how the SUMMA framework may be used to regularize the

Landweber algorithm and the SMART.

6.3 Regularization

The Landweber algorithm minimizes the function

f(x) =
1

2
||Ax− b||2

and converges to the least-squares solution closest to x0. When A is ill-conditioned

and b noisy, the norm of any least-squares solution may be unacceptably large. In

such cases, we may choose to minimize

1

2
||Ax− b||2 +

ε

2
||x||2. (6.18)
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The solution to this problem satisfies the equation

(A†A + εI)x = A†b.

We would like to have an iterative algorithm that converges to this solution, but does

not employ the matrix (A†A + εI).

Similarly, for the choice of δj = 1, the SMART converges to the non-negative

minimizer of the function f(x) = KL(Px, y) for which KL(x, x0) is minimized. When

y = Px has no non-negative solution, these minimizers may have several unwanted

zero entries (see Appendix B). We can regularize the problem by minimizing the

function

KL(Px, y) + εKL(x, p), (6.19)

where p is a positive vector chosen as a prior estimate of the desired solution. As in the

Landweber case, we want a tractable iterative algorithm that solves this minimization

problem.

6.3.1 A Regularized Landweber Algorithm

We use Equation (6.9), with f(x) as given by Equation (6.18). Once again, we use

h(x) =
1

2γ
||x||2.

At each step, we minimize the function

Gk(x) =
1

2
||Ax− b||2 +

ε

2
||x||2 +

1

2γ
||x− xk−1||2 − 1

2
||Ax− Axk−1||2 − ε

2
||x− xk−1||2.

(6.20)

The equation to be solved is then

0 = A†(Axk−1 − b) + εxk + (
1

γ
− ε)(xk − xk−1),

and we obtain
1

γ
xk = (

1

γ
− ε)xk−1 + A†(b− Axk−1).

Therefore, we have

xk = (1− γε)xk−1 + γA†(b− Axk−1). (6.21)

Notice that our problem is equivalent to minimizing the function

F (x) = ||Bx− c||22, (6.22)
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for

B =
[

A√
εI

]
, (6.23)

and

c =
[
b
0

]
, (6.24)

where 0 denotes a column vector with all entries equal to zero. The Landweber

iteration for the problem Bx = c is

xk+1 = xk + γBT (c−Bxk), (6.25)

for 0 < γ < 2/ρ(BT B), where ρ(BT B) is the spectral radius of BT B.

6.3.2 A Regularized SMART

We use Equation (6.9), with f(x) as given by Equation (6.19) and δj = 1. Now we

use

h(x) =
J∑

j=1

xj(log xj)− xj,

or, equivalently,

h(x) = KL(x, 1),

where 1 denotes the vector with all its entries equal to one.

At each step, we minimize the function

Gk(x) = KL(Px, y) + εKL(x, p) +
1

γ
KL(x, xk−1)−KL(Px, Pxk−1)− εKL(x, xk−1).

(6.26)

The equation to be solved is then

0 =
I∑

i=1

Pij log
((Pxk−1)i

yi

)
+

1

γ
log xk

j − (
1

γ
− ε) log xk−1

j − ε log pj

and we obtain

1

γ
log xk = (

1

γ
− ε) log xk−1 +

I∑
i=1

Pij log
( yi

(Pxk−1)i

)
+ ε log pj.

Therefore, we have

log xk = (1− γε) log xk−1 + γ
I∑

i=1

Pij log
( yi

(Pxk−1)i

)
+ γε log pj. (6.27)
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Since the multiplier 1
γ

is now effectively replaced by

1

γ
− ε =

1

α
,

we need sjα ≤ 1, so that

γ ≤ 1

sj + ε
,

for all j.

With the choice

γ =
1

sj + ε
,

we have

log xk
j =

( sj

sj + ε

)[
log xk−1

j + s−1
j

I∑
i=1

Pij log
( yi

(Pxk−1)i

)]
+

( ε

sj + ε

)
log pj,

and the new xk
j is a weighted geometric mean of the unregularized SMART iterate

and the pj.

In the next section, we consider a block-iterative version of SUMMA and use it

to rederive BI-ART and BI-MART.

7 Block-Iterative SUMMA

We assume now that the function to be minimized has the form

f(x) =
I∑

i=1

fi(x),

where each fi(x) is non-negative. We also assume that there is x̂ in C with f(x̂) = 0;

therefore, fi(x̂) = 0, for each i. Note that this assumption ensures that each of the

functions fi(x) has a common minimizer. When this is not the case, it is highly likely

that the block-iterative SUMMA will exhibit subsequential convergence to a limit

cycle, which is what we always see with the MART and can prove for the ART.

For n = 1, ..., N we define

fn(x) =
∑

i∈Bn

fi(x).

We return to the modified PMA method and develop a block-iterative version.
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7.1 BI-SUMMA

For each k = 1, 2, ... and n = k(mod N), we minimize the function

Gk(x) = fn(x) +
1

γn

Dh(x, xk−1)−Dfn(x, xk−1) (7.1)

to get xk. We shall assume that γn has been chosen so that

Dh(x, z) ≥ γnDfn(x, z),

for all appropriate x and z. Then

0 =
1

γn

∇h(xk)− 1

γn

∇h(xk−1) +∇fn(xk−1),

or

∇h(xk) = ∇h(xk−1)− γn∇fn(xk−1). (7.2)

From the appearance of the gradient ∇fn(xk−1), we see that this iterative method is

a partial gradient or incremental gradient approach [7].

Using Equation (7.2) we can show that

Gk(x)−Gk(x
k) =

1

γn

Dh(x, xk). (7.3)

From the definition, we have

Gk(x̂) =
1

γn

Dh(x̂, xk−1)−Dfn(x̂, xk−1),

and from Equation (7.3) we have

Gk(x̂) = Gk(x
k) +

1

γn

Dh(x̂, xk).

Therefore,

Dh(x̂, xk−1)−Dh(x̂, xk) = γnGk(x
k) + γnDfn(x̂, xk−1). (7.4)

From this equation we can conclude several things, provided that we make two as-

sumptions about the Bregman distance Dh(x, z).

We assume, first, that for each fixed x in the domain of h, the function F (z) =

Dh(x, z) has bounded level sets, and second, that if the sequence {Dh(x, xk)} con-

verges to zero, then {xk} converges to x. Now we can draw our conclusions:
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• the sequence {Dh(x̂, xk)} is decreasing;

• the sequence {xk} is bounded;

• the sequences {Dfn(x̂, xmN+n−1)} converge to zero.

Mimicking earlier proofs, we can show that the sequence {xk} has limit x∗, with

f(x∗) = 0.

The BI-ART is a particular case of BI-SUMMA, and the Gk(x) is

Gk(x) =
1

2
||Anx− bn||2 +

1

2γn

||x− xk−1||2 − 1

2
||Anx− Anx

k−1||2.

The BI-MART is also a particular case of BI-SUMMA, and the Gk(x) is

Gk(x) = KL(Pnx, yn) +
1

γn

J∑
j=1

δ−1
j KL(xj, x

k−1
j )−KL(Pnx, Pnx

k−1).

7.2 Acceleration

As we mentioned previously, block-iterative algorithms do not always converge, but

may, in certain cases, exhibit subsequential convergence to a limit cycle consisting

of (usually) N distinct vectors. This happens in BI-ART when there is no solution

of Ax = b, in BI-MART and BI-EMML when there is no non-negative solution of

y = Px, and in BI-SUMMA when there is no x̂ with f(x̂) = 0. Except for BI-ART,

no proofs of this subsequential convergence have been given for the block-iterative

algorithms discussed here. Nevertheless, block-iterative algorithms, including the

OSEM, have repeatedly been observed to produce useful approximate solutions much

faster than their simultaneous counterparts. We stress that this acceleration is not

due merely to the use of blocks. Block-iterative methods provide an opportunity

to select parameters and the choice of these parameters greatly affects the rate of

convergence.

7.2.1 The BI-ART

We see from Equation (3.13) that, generally speaking, the distance ||x̂−xk||22 decreases

faster if the parameter γn is large, subject to the restriction that 0 < γn ≤ 2/Ln; the

choice of γn = L−1
n would seem to be a good one. In the case of the ART, we have

Li = Ln = ||ai||22; the ART typically uses the value γi = 1/||ai||2 = L−1
i . It has been

shown, however, that a certain amount of relaxation can be beneficial; that is, taking

a smaller value of γi can lead to faster convergence [49]. The ordering of the equations
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can also have a significant effect on the rate of convergence [37], as Equation (3.13)

suggests.

With the choice of γn = 1/Ln, the right side of Equation (3.13) is, very loosely

speaking, independent of the value of N ; this is the key to understanding the accel-

eration. One full pass through all the blocks then reduces ||x̂− xk||2 about N times

faster than the simultaneous version.

7.2.2 The BI-MART and BI-EMML

Equation (4.7) tells us that, generally speaking, the distance

J∑
j=1

δ−1
j KL(x̂j, x

k
j )

will decrease faster if the parameter γn is large. As with the BI-ART, the ordering of

the equations is also a factor.

With the choices δj = 1 and γn = m−1
n , the right side of Equation (4.7) is, roughly

speaking, independent of the value of N . As with the BI-ART, one complete pass

through all the blocks will reduce KL(x̂, xk) about N times faster than with SMART.

Equation (5.7) shows that much the same story holds for the BI-EMML algorithm.

7.2.3 The BI-SUMMA

Loosely speaking, Equation (7.4) shows that the distance Dh(x̂, xk) will decrease more

rapidly if the parameter γn is large, subject to the restriction that

Dh(x, z) ≥ γnDfn(x, z).

One possible choice is to select Dh(x, z) so that

Dh(x, z) ≥ γ
N∑

n=1

Dfn(x, z),

and then take γn = γ.

For example, in the BI-MART case, with δj = 1 and

m = max{sj |j = 1, ..., J},

we have

KL(x, z) ≥ m−1KL(Px, Pz) = m−1
N∑

n=1

KL(Pnx, Pnz) ≥ m−1KL(Pnx, Pnz).

Therefore, the choice of γn = m−1 is acceptable. However, convergence requires only

that γnsnj ≤ 1; the choice of γn = m−1 is roughly N times too small.
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8 Projecting onto Convex Sets

As we have seen, projection onto hyperplanes plays an important role in most of

the iterative algorithms discussed so far. The BI-ART involves weighted arithmetic

means of orthogonal projections onto the hyperplanes Hi, while the BI-MART and

BI-EMML employ weighted geometric and arithmetic means of generalized Kullback-

Leibler projections onto H+
i . An obvious extension of these ideas is to consider

iterative algorithms based on projection onto closed convex sets.

8.1 The Convex Feasibility Problem

Let Ci, i = 1, ..., I, be closed non-empty convex sets in RJ . The convex feasibility

problem (CFP) is to find a member of C, the intersection of the Ci, if this intersec-

tion is non-empty. The successive orthogonal projections (SOP) method [36] is the

following. Begin with an arbitrary x0. For k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1 = Pix
k, (8.1)

where Pix denotes the orthogonal projection of x onto the set Ci. Since each of the

operators Pi is firmly non-expansive, the product

T = PIPI−1 · · · P2P1 (8.2)

is averaged. Since C is not empty, T has fixed points. By the KM Theorem, the

sequence {xk} converges to a member of C. It is useful to note that the limit of

this sequence will not generally be the point in C closest to x0; it is if the Ci are

hyperplanes, however.

In [8] Bregman extends the SOP method to the case in which the projections are

not orthogonal, but are with respect to a Bregman distance; this is the successive

generalized projection (SGP) algorithm.

8.2 Using Multiple Distances

It is interesting to note that, in the BI-MART and BI-EMML methods, the generalized

projections we employ involve weighted KL distances that vary with the hyperplanes.

This leads to the conjecture that Bregman’s SGP method can be further extended

so that, at each step, a different Bregman distance is used. Simple counter-examples

exist that show that merely allowing the distances to vary will not suffice. However,

it was shown in [14] that such an extension of the SGP is possible, if we employ a
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generalized relaxation of the projections. This multi-distance SGP (MSGP) closely

resembles the BI-SUMMA.

For each k = 1, 2, ... and i = k(mod I), we let Mi(x
k−1) denote the member of Ci

minimizing the Bregman distance Dfi
(x, xk−1). Then we minimize

Gk(x) = Dfi
(x, Mi(x

k−1)) + Dh(x, xk−1)−Dfi
(x, xk−1) (8.3)

to get xk. We assume that Dh(x, z) is a dominating Bregman distance for the family

{Dfi
(x, z)}, that is,

Dh(x, z) ≥ Dfi
(x, z),

for all appropriate x and z. With suitable restrictions on the functions h and fi, the

sequence {xk} generated by the MSGP converges to a point in the intersection of the

Ci [14].

8.3 The CQ Algorithm

A special case of the CFP is the split feasibility problem (SFP), which is to find a

member of the closed convex set C in RJ for which Ax is a member of the closed convex

set Q in RI . In [14] the MSGP algorithm was applied to the SFP and an iterative

solution method was obtained. That method was not completely satisfactory, in that,

like similar iterative solutions given by others, each iterative step involved solving a

system of linear equations. Subsequently, a different, and more practical, iterative

method for solving the SFP, the CQ algorithm, was discovered [15]. It can be shown

that convergence of the CQ algorithm follows from the KM Theorem [16]. Recent

work by Combettes and Wajs reveals that the CQ algorithm is a special case of

forward-backward splitting [27].

8.4 The Agmon-Motzkin-Schoenberg Algorithm

The Agmon-Motzkin-Schoenberg (AMS) algorithm [1, 45] is an iterative method for

solving a system of linear inequalities Ax ≥ b. Both the ART and the AMS algorithms

are examples of the method of projection onto convex sets. The AMS algorithm is a

special case of the cyclic subgradient projection (CSP) method, so that convergence

of the AMS, in the consistent case, follows from the convergence theorem for the CSP

algorithm. In the case of ART, the sets Ci are hyperplanes in RJ ; suppose now that

we take the Ci to be half-spaces and consider the problem of finding x such that

Ax ≥ b.
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For each i let Hi be the half-space H+
i = {x|(Ax)i ≥ bi}. Then x will be in the

intersection of the sets Ci = H+
i if and only if Ax ≥ b. Methods for solving this CFP,

such as Hildreth’s algorithm, are discussed in the book by Censor and Zenios [24]. Of

particular interest for us here is the behavior of the AMS algorithm:

Algorithm 8.1 (Agmon-Motzkin-Schoenberg) Let x0 be arbitrary. Having found

xk, define

xk+1
j = xk

j + Ai(k)j(bi(k) − (Axk)i(k))+. (8.4)

The AMS algorithm converges to a solution of Ax ≥ b in the consistent case, that

is, if there are solutions to Ax ≥ b. If there are no solutions, the AMS algorithm

converges cyclically, that is, subsequences associated with the same m converge, as

has been shown by De Pierro and Iusem [30], and by Bauschke, Borwein and Lewis

[6].

8.5 Some Open Questions

Algorithms for solving the CFP fall into two classes: those that employ all the sets

Ci at each step of the iteration (the so-called simultaneous methods) and those that

do not (the row-action algorithms or, more generally, block-iterative methods). In

the consistent case, in which the intersection of the convex sets Ci is nonempty, all

reasonable algorithms are expected to converge to a member of that intersection; the

limit may or may not be the member of the intersection closest to the starting vector

x0.

In the inconsistent case, in which the intersection of the Ci is empty, simultaneous

methods typically converge to a minimizer of a proximity function [21], such as

f(x) =
∑I

i=1
||x− PCi

x||22, (8.5)

if a minimizer exists.

Methods that are not simultaneous cannot converge in the inconsistent case, since

the limit would then be a member of the (empty) intersection. Such methods often

exhibit what is called cyclic convergence; that is, subsequences converge to finitely

many distinct limits comprising a limit cycle. Once a member of this limit cycle is

reached, further application of the algorithm results in passing from one member of

the limit cycle to the next. Proving the existence of these limit cycles seems to be

a difficult problem. For the particular case of two non-intersecting convex sets, the
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existence of a limit cycle for the SOP algorithm can be obtained as a consequence of

the convergence of the CQ algorithm (see [19], p. 202).

When Ax = b has no solutions, it has been shown that ART converges subse-

quentially to a limit cycle. Similarly, when the system y = Px has no non-negative

solution, BI-MART and BI-EMML have always been observed to exhibit subsequen-

tial convergence to a limit cycle, but no proof of the existence of limit cycles for these

algorithms has been discovered.

In the proof of convergence of BI-SUMMA, it was necessary to assume that f(x̂) =

0, so that each of the functions fi(x) is minimized simultaneously at x̂. For the BI-

ART, this means that Ax = b has solutions, and for the BI-MART, that y = Px

has non-negative solutions. It seems natural to assume that, in the absence of a

simultaneous minimizer of the fi(x), other instances of BI-SUMMA will also exhibit

subsequential convergence to a limit cycle, but there is no proof of this, so far.

8.5.1 Do Limit Cycles Always Exist?

Tanabe [50] showed the existence of a limit cycle for the ART (see also [29]), in which

the convex sets are hyperplanes. The SOP method may fail to have a limit cycle for

certain choices of the convex sets. For example, if, in R2, we take C1 to be the lower

half-plane and C2 = {(x, y)|x > 0, y ≥ 1/x}, then the SOP algorithm fails to produce

a limit cycle. However, Gubin, Polyak and Riak [36] prove weak convergence to a

limit cycle for the method of SOP in Hilbert space, under the assumption that at

least one of the Ci is bounded, hence weakly compact. In [6] Bauschke, Borwein and

Lewis present a wide variety of results on the existence of limit cycles. In particular,

they prove that if each of the convex sets Ci in Hilbert space is a convex polyhedron,

that is, the intersection of finitely many half-spaces, then there is a limit cycle and

the subsequential convergence is in norm. This result includes the case in which each

Ci is a half-space, so implies the existence of a limit cycle for the AMS algorithm.

8.5.2 What is the Limit Cycle?

Once we know that a limit cycle exists, it is reasonable to ask what its properties

are. For the ART case, Eggermont et al. [31] have shown that the limit cycle can

be made to reduce to a singleton set containing just the least-squares solution, if

suitable strong under-relaxation is employed. Browne and De Pierro [9] give a similar

result for the BI-EMML. In both cases, the strong under-relaxation compresses the

limit cycle into the limit of the simultaneous version of the algorithm, which is the

minimizer of a proximity function, the mean-square distance in the case of ART, and
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the minimizer of KL(y, Px), in the case of BI-EMML. This leads us to ask what the

connection is between the vectors of the limit cycle and the limit of the simultaneous

version of the algorithm. In particular, we would like to know how the members of

the ART limit cycle are related to the least-squares solution, and how to use them to

calculate the least-squares solution.

8.5.3 Where is the Limit Cycle?

In [12] it was shown that, if A has full rank and I = J + 1, then the vectors of the

ART limit cycle are all the same distance from the least-squares solution, that is,

the limit cycle lies on a sphere in RJ centered at the least-squares solution (see also

[18]). It is a curious fact that the condition I = J + 1 appears necessary. There are

counter-examples in other cases, so that, if a more general result is available, it will

be more complicated than simply having the vectors of the limit cycle lie on a sphere

centered at the least-squares solution.

It was also shown there that the least-squares solution could be obtained from the

vectors of the limit cycle by means of a feedback procedure; related results were also

obtained for the BI-MART and BI-EMML (see also [19]). Nevertheless, we still do

not have a useful characterization of the vectors of the limit cycle, nor even a proof

of its existence, for most of these block-iterative algorithms.

9 Appendix A: The Krasnoselskii-Mann Theorem

For any operator T : RJ → RJ and G = I−T , where I denotes the identity operator,

we have

||x− y||2 − ||Tx− Ty||2 = 2〈Gx−Gy, x− y〉 − ||Gx−Gy||2, (9.1)

for all x and y in the domain of T . An operator G : RJ → RJ is ν-inverse strongly

monotone if, for each x and y in its domain, we have

〈Gx−Gy, x− y〉 ≥ ||Gx−Gy||2.

An operator N : RJ → RJ is non-expansive if, for all x and y in its domain, we have

||Nx−Ny|| ≤ ||x− y||.

An operator A : RJ → RJ is averaged if, for non-expansive operator N and some

scalar α ∈ (0, 1), we have

A = (1− α)I + αN.
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An operator F : RJ → RJ is firmly non-expansive if, for all x and y in its domain,

we have

〈Fx− Fy, x− y〉 ≥ ||Fx− Fy||2.

Using the identity in Equation (9.1), one shows that an operator T is non-expansive,

averaged, or firmly non-expansive, if and only if its complement G is 1
2
-ism, 1

2α
-ism,

for some 0 < α < 1, or 1-ism, respectively.

The Krasnoselskii-Mann Theorem [44] is the following:

Theorem 9.1 Let N be a non-expansive operator and A = (1−α)I + αN , for some

α ∈ (0, 1). If the operator N has fixed points, that is, there are vectors x such that

Nx = x, then, for any starting vector x0, the sequence {Akx0} converges to a fixed

point of N .

The class of averaged operators is closed to products [4] and includes orthogonal

projections onto closed convex sets, as well as operators of the form A = I − γ∇f ,

for any convex function f whose gradient is L-Lipschitz continuous, and any γ in the

interval (0, 2/L) [3, 34]. For related results, see [26].

10 Appendix B: The Night Sky Theorems

For the real system Ax = b, consider the non-negatively constrained least-squares

problem of minimizing the function ||Ax− b||2, subject to the constraints xj ≥ 0 for

all j. Although there may be multiple solutions x̂, we know, at least, that Ax̂ is the

same for all solutions.

According to the Karush-Kuhn-Tucker Theorem, the vector Ax̂ must satisfy the

condition

I∑
i=1

Aij((Ax̂)i − bi) = 0 (10.1)

for all j for which x̂j > 0 for some solution x̂. Let S be the set of all indices j for

which there exists a solution x̂ with x̂j > 0. Then Equation (10.1) must hold for all

j in S. Let Q be the matrix obtained from A by deleting those columns whose index

j is not in S. Then QT (Ax̂ − b) = 0. If Q has full rank and the cardinality of S is

greater than or equal to I, then QT is one-to-one and Ax̂ = b. We have proven the

following result.

Theorem 10.1 Suppose that A has the full-rank property, that is, A and every matrix

Q obtained from A by deleting columns have full rank. Suppose there is no nonnegative
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solution of the system of equations Ax = b. Then there is a subset S of the set

{j = 1, 2, ..., J}, with cardinality at most I − 1, such that, if x̂ is any minimizer of

||Ax− b||2 subject to x ≥ 0, then x̂j = 0 for j not in S. Therefore, x̂ is unique.

When x̂ is a vectorized two-dimensional image and J > I, the presence of at most

I−1 positive pixels makes the resulting image resemble stars in the sky; for that reason

this theorem and the related results for the EMML, and SMART algorithms ([10]),

as well as for block-iterative versions, are sometimes called night sky theorems. The

zero-valued pixels typically appear scattered throughout the image. This behavior

occurs with all the algorithms discussed so far that impose nonnegativity, whenever

the real system Ax = b has no nonnegative solutions.
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