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Abstract

Let X be an arbitrary nonempty set and f : X → R. The objective is to
minimize f(x) over x ∈ X. The iterative algorithms considered here are “de-
scent”algorithms, so that {f(xk)} ↓ β∗ ≥ −∞. We want β∗ = β

.
= infx∈X f(x).

In proximal minimization algorithms (PMA) we minimize f(x) +d(x, xk−1)
to get xk. The mapping d : X×X → R+ is a “distance”function, with d(x, x) =
0 for all x.

In majorization minimization (MM), also called optimization transfer, a
second “majorizing” function g(x|z) is introduced, with the properties g(x|z) ≥
f(x), for all x and z in X, and g(x|x) = f(x). We then minimize g(x|xk−1) to
get xk.

Let Φ : X × Y → R+, where X and Y are arbitrary nonempty sets. The
objective in alternating minimization (AM) is to find x̂ ∈ X and ŷ ∈ Y such that
Φ(x̂, ŷ) ≤ Φ(x, y) for all x ∈ X and y ∈ Y . For each k we minimize Φ(x, yk−1) to
get xk−1 and then minimize Φ(xk−1, y) to get yk. For each x ∈ X, let y(x) ∈ Y
be such that Φ(x, y) ≥ Φ(x, y(x)), for all y ∈ Y ; then yk = y(xk−1). Minimizing
Φ(x, y) over all x ∈ X and y ∈ Y is equivalent to minimizing f(x)

.
= Φ(x, y(x))

over all x ∈ X. With d(x, z)
.
= Φ(x, y(z)) − Φ(x, y(x)), minimizing Φ(x, yk) is

equivalent to minimizing f(x)+d(x, xk−1). Therefore, AM, MM, and PMA are
equivalent. Each type of algorithm leads to a decreasing sequence {f(xk)}.

New conditions on PMA that imply β∗ = β are given, which lead to new
conditions on AM for the sequence {Φ(xk, yk)} to converge to infx,y Φ(x, y).
These conditions can then be translated into the language of MM. Examples
are given of each type of algorithm and some open questions are posed.
Key Words: Alternating minimization, optimization transfer, proximal min-
imization, Bregman distance, convex functions.
2000 Mathematics Subject Classification: Primary 65F10, 65K10; Sec-
ondary 90C26, 26B25. To appear in JNCA
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1 Introduction

Let X be an arbitrary nonempty set and f : X → R. The objective is to minimize

f(x) over x ∈ X. The iterative algorithms considered here are “descent”algorithms,

so that {f(xk)} ↓ β∗ ≥ −∞. We want β∗ = β
.
= infx∈X f(x).

In proximal minimization algorithms (PMA) [12, 13] we minimize f(x)+d(x, xk−1)

to get xk. The d : X × X → R+ is a “distance”function, with d(x, x) = 0, for all

x. In majorization minimization (MM), also called optimization transfer, a second

“majorizing” function g(x|z) is introduced, with the properties g(x|z) ≥ f(x), for all

x and z in X, and g(x|x) = f(x). We then minimize g(x|xk−1) to get xk. With

d(x, z)
.
= g(x|z)− f(x),

it is clear that MM is equivalent to PMA; alternating minimization (AM) algorithms

appear to be more general.

Let Φ : X×Y → R+, where X and Y are arbitrary nonempty sets. The objective

in AM is to find x̂ ∈ X and ŷ ∈ Y such that

Φ(x̂, ŷ) ≤ Φ(x, y),

for all x ∈ X and y ∈ Y . For each k we minimize Φ(x, yk−1) to get xk−1 and then

minimize Φ(xk−1, y) to get yk. We have the following proposition:

Proposition 1.1 The AM, PMA, and MM methods are equivalent.

Proof: We reformulate AM as a method for minimizing a function f(x) of the single

variable x ∈ X. For each x ∈ X, let y(x) ∈ Y be such that Φ(x, y) ≥ Φ(x, y(x)),

for all y ∈ Y . Then minimizing Φ(x, y) over all x ∈ X and y ∈ Y is equiva-

lent to minimizing f(x)
.
= Φ(x, y(x)) over all x ∈ X. Every MM algorithm, and

therefore every PMA, can be viewed as an application of alternating minimization:

define Φ(x, z)
.
= g(x|z). Minimizing g(x|xk−1) to get xk is equivalent to minimizing

Φ(x, xk−1), while minimizing g(xk|z) is equivalent to minimizing Φ(xk, z) and yields

z = xk.

Note that Φ(xk−1, yk) = f(xk−1). The sequence {f(xk)} is decreasing to some β∗.

Each of the algorithms we consider can be reformulated as minimizing some ob-

jective function f(x) and can be described by saying that at each step we minimize

Gk(x) = f(x) + gk(x),

where gk(x) ≥ 0 and gk(x
k−1) = 0. Such methods are called auxiliary-function (AF)

algorithms [7]. For AF algorithms we know that the sequence {f(xk)} is decreasing
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to some number β∗ ≥ −∞. If an AF algorithm is in the subclass of SUMMA2

algorithms, then we know that β∗ = β
.
= infx f(x). The Euclidean and Kullback-

Leibler distances yield algorithms in the SUMMA2 class, and we suspect that the

methods based on the Hellinger and Pearson φ2 distances are also in the SUMMA2

class. Conditions are presented that are sufficient for PMA to be in the SUMMA2

class, and therefore, for β∗ = β for AM, PMA, and MM algorithms. We also consider

the use of alternating minimization of distances to obtain approximate solutions of

systems of linear equations. The distances considered include the Euclidean, the

Kullback-Leibler, the Hellinger, and the Pearson φ2 distances.

2 Auxiliary-Function Methods in Optimization

Let f : X → R, where X is an arbitrary nonempty set. In applications the set X

will have additional structure, but not always that of a Euclidean space; for that

reason, it is convenient to impose no structure at the outset. An iterative procedure

for minimizing f(x) over x ∈ X is called an auxiliary-function (AF) algorithm [7] if,

at each step, we minimize

Gk(x) = f(x) + gk(x), (2.1)

where gk(x) ≥ 0, and gk(x
k−1) = 0. It follows easily that the sequence {f(xk)} is

decreasing, so {f(xk)} ↓ β∗ ≥ −∞. We want more, however; we want β∗ = β
.
=

infx∈X f(x). To have this we need to impose an additional condition on the auxiliary

functions gk(x); the SUMMA Inequality [7] is one such additional condition.

2.1 The SUMMA Class

We say that an AF algorithm is in the SUMMA class if the SUMMA Inequality holds

for all x in X:

Gk(x)−Gk(x
k) ≥ gk+1(x). (2.2)

One consequence of the SUMMA Inequality is

gk(x) + f(x) ≥ gk+1(x) + f(xk), (2.3)

for all x ∈ X. It follows from this that β∗ = β. If this were not the case, then there

would be z ∈ X with

f(xk) ≥ β∗ > f(z)
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for all k. The sequence {gk(z)} would then be a decreasing sequence of nonnegative

terms with the sequence of its successive differences bounded below by β∗−f(z) > 0.

There are many iterative algorithms that satisfy the SUMMA Inequality [7], such

as barrier-function methods [22], and are therefore in the SUMMA class. However,

some important methods that are not in this class still have β∗ = β; one example is

the proximal minimization method of Auslender and Teboulle [2]. This suggests that

the SUMMA class, large as it is, is still unnecessarily restrictive. This leads us to the

definition of the SUMMA2 class.

2.2 The SUMMA2 Class

An iterative algorithm for minimizing f : X → R is said to be in the SUMMA2 class if,

for each sequence {xk} generated by the algorithm, there are functions hk : X → R+

such that, for all x ∈ X, we have

hk(x) + f(x) ≥ hk+1(x) + f(xk). (2.4)

Any algorithm in the SUMMA class is in the SUMMA2 class; use hk = gk. As in the

SUMMA case, we must have β∗ = β, since otherwise the successive differences of the

sequence {hk(z)} would be bounded below by β∗ − f(z) > 0. It is helpful to note

that the functions hk need not be the gk, and we do not require that hk(x
k−1) = 0.

The proximal minimization method of Auslender and Teboulle is in the SUMMA2

class, as is the expectation maximization maximum likelihood (EMML) algorithm

[28, 29, 4].

3 PMA is MM

In proximal minimization algorithms (PMA) we minimize

f(x) + d(x, xk−1) (3.1)

to get xk. Here d(x, z) ≥ 0 and d(x, x) = 0, so we say that d(x, z) is a distance.

In [14] the authors review the use, in statistics, of “majorization minimization”

(MM), also called “optimization transfer”. In numerous papers [21, 1] Jeff Fessler

and his colleagues use the terminology “surrogate-function minimization” to describe

optimization transfer. The objective is to minimize f : X → R. In MM methods a

second “majorizing” function g(x|z) is introduced, with the properties g(x|z) ≥ f(x),

for all x and z in X, and g(x|x) = f(x). We then minimize g(x|xk−1) to get xk.
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Defining

d(x, z)
.
= g(x|z)− f(x),

it is clear that d(x, z) is a distance and so MM is equivalent to PMA.

4 PMA with Bregman Distances (PMAB)

Let f : RJ → R and h : RJ → R both be convex and differentiable. Let

Dh(x, z)
.
= h(x)− h(z)− 〈∇h(z), x− z〉

be the Bregman distance associated with h. At the kth step of a proximal minimiza-

tion algorithm with Bregman distance (PMAB) we minimize

Gk(x) = f(x) +Dh(x, x
k−1) = f(x) + h(x)− h(xk−1)− 〈∇h(xk−1), x− xk−1〉 (4.2)

to get xk. It was shown in [7] that

Gk(x)−Gk(x
k) = Df (x, x

k) +Dh(x, x
k) ≥ Dh(x, x

k) = gk+1(x),

so that all PMAB are in the SUMMA class.

In order to minimize Gk(x) we need to solve the equation

0 = ∇f(x) +∇h(x)−∇h(xk−1) (4.3)

for x = xk; generally, this is not easy. Here is a “trick” that can be used to simplify

the calculations. Select a function g so that h
.
= g − f is convex and differentiable

and so that the equation

0 = ∇g(x)−∇g(xk−1) +∇f(xk−1) (4.4)

is easily solved. As an example, we use this “trick” to derive a gradient descent

algorithm and the Landweber algorithm.

5 Gradient Descent and the Landweber Algorithm

Suppose that we want to minimize a convex differentiable function f : RJ → R. If

the gradient of f , ∇f , is a L-Lipschitz continuous operator, that is, if

‖∇f(x)−∇f(z)‖ ≤ L‖x− z‖,
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then the function

h(x)
.
= g(x)− f(x) =

1

γ
‖x‖2 − f(x)

is convex, for 0 < γ ≤ 1/L. For each k we minimize

Gk(x) = f(x) +
1

γ
‖x− xk−1‖2 −Df (x, x

k−1)

to get xk. We then have

xk = xk−1 − γ∇f(xk−1),

which is a gradient descent algorithm. As a special case we get Landweber’s algorithm.

Suppose we want to find a minimizer of the function f(x) = ‖Ax− b‖2, where A

is a real I by J matrix. Let g(x) = 1
γ
‖x‖2, for some γ in the interval (0, 1

L
), where

L = ρ(ATA), the largest eigenvalue of the matrix ATA. Then the function h
.
= g− f

is convex and differentiable. We have

Df (x, y) = ‖Ax− Ay‖2, (5.5)

so that

Dh(x, y) =
1

γ
‖x− y‖2 − ‖Ax− Ay‖2. (5.6)

At the kth step we differentiate

‖Ax− b‖2 +
1

γ
‖x− xk−1‖2 − ‖Ax− Axk−1‖2, (5.7)

to obtain

0 = AT (Ax− b) +
1

γ
(x− xk−1)− AT (Ax− Axk−1), (5.8)

so that

xk = xk−1 − γAT (Axk−1 − b). (5.9)

This is the iterative step of Landweber’s algorithm. The sequence {xk} converges to

a minimizer x∗ of f(x), and x∗ minimizes ‖x̂−x0‖ over all x̂ that minimize ‖Ax− b‖.
In [9] this same “trick”was used to obtain an elementary proof of convergence of

the forward-backward-splitting algorithm [15].
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6 The Quadratic Upper Bound Principle

In [3] the authors introduce the quadratic upper bound principle as a method for

obtaining a majorizing function in optimization transfer. The objective is to minimize

the function f : RJ → R. If f is twice continuously differentiable, then, for any x

and z, we have, according to the extended Mean Value Theorem,

f(x) = f(z) + 〈∇f(z), x− z〉+
1

2
(x− z)T∇2f(w)(x− z), (6.10)

for some w on the line segment connecting x and z. If there is a positive-definite

matrix B such that B −∇2f(w) is positive-definite for all w, then we have

f(x) ≤ f(z) + 〈∇f(z), x− z〉+
1

2
(x− z)TB(x− z). (6.11)

Then we have g(x|z) ≥ f(x), for all x and z, where

g(x|z)
.
= f(z) + 〈∇f(z), x− z〉+

1

2
(x− z)TB(x− z). (6.12)

The iterative step is now to minimize g(x|xk−1) to get xk.

The iterative step is equivalent to minimizing

Gk(x) = f(x) +
1

2
(x− xk−1)TB(x− xk−1)−Df (x, x

k−1), (6.13)

which is quite similar to the “trick”introduced previously. However, it is not precisely

the same, since the authors of [3] do not assume that f is convex, so this is not a

particular case of PMAB. Unless f is convex, we cannot assert that this iteration is

in the SUMMA class, so we cannot be sure that the iteration reduces {f(xk)} to the

infimal value β. This approach also relies on the extended mean value theorem, while

our “trick” permits us considerable freeedom in the selection of the function g.

7 Alternating Minimization (AM)

In this section we review the basics of alternating minimization (AM) [16], and then

show that AM, PMA and MM are equivalent. Alternating minimization plays an

important role in the application of the EM algorithm [18] to medical image recon-

struction [28, 29, 6].

7.1 The AM Method

Let Φ : X × Y → R+, where X and Y are arbitrary nonempty sets. The objective is

to find x̂ ∈ X and ŷ ∈ Y such that

Φ(x̂, ŷ) ≤ Φ(x, y),
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for all x ∈ X and y ∈ Y .

The alternating minimization method [16] is to minimize Φ(x, yk−1) to get xk−1

and then to minimize Φ(xk−1, y) to get yk. Clearly, the sequence {Φ(xk−1, yk)} is

decreasing and converges to some β∗ ≥ −∞. We want β∗ = Φ(x̂, ŷ), or, at least, for

β∗ = β, where β = infx,y Φ(x, y).

In AM we find xk by minimizing Φ(x, yk) = Φ(x, y(xk−1)). For each x and z in X

we define

d(x, z)
.
= Φ(x, y(z))− Φ(x, y(x)). (7.1)

Clearly, d(x, z) ≥ 0 and d(x, x) = 0, so d(x, z) is a “distance”. We obtain xk by

minimizing

Φ(x, y(xk−1)) = Φ(x, y(x)) + Φ(x, y(xk−1))− Φ(x, y(x)) = f(x) + d(x, xk−1),

which shows that every AM algorithm is also a PMA. Given any AM algorithm, we

define f(x)
.
= Φ(x, y(x)). Then the function g(x|z)

.
= Φ(x, y(z)) majorizes f(x). So

we see, once again, that AM, PMA and MM are equivalent methods. Now we can

obtain conditions on MM algorithms sufficient for β∗ = β from analogous conditions

expressed in the language of AM or PMA.

7.2 The Three-Point Property

The three-point property (3PP) in [16] is the following: for all x ∈ X and y ∈ Y and

for all k we have

Φ(x, yk)− Φ(xk, yk) ≥ d(x, xk). (7.2)

The 3PP implies that the AM algorithm, expressed as a PMA, is in the SUMMA

class and so is sufficient to have β∗ = β.

7.3 The Weak Three-Point Property

The 3PP is stronger than we need to get β∗ = β; the weak 3PP implies that the

AM algorithm, expressed as a PMA, is in the SUMMA2 class, and so is sufficient for

β∗ = β. The weak three-point property (w3PP) is the following: for all x ∈ X and

y ∈ Y and for all k we have

Φ(x, yk)− Φ(xk, yk+1) ≥ d(x, xk). (7.3)
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7.4 Consequences of the w3PP

From the w3PP we find that, for all x and y,

d(x, xk−1)− d(x, xk) ≥ Φ(xk, yk+1)− Φ(x, y(x)). (7.4)

Since

Φ(xk, yk+1)− Φ(x, y(x)) = f(xk)− f(x)

we conclude that, whenever the w3PP holds, we have

d(x, xk−1) + f(x) ≥ d(x, xk) + f(xk), (7.5)

for all x ∈ X. This means that AM with the w3PP is in the SUMMA2 class of

iterative algorithms, from which it follows that β∗ = β.

7.5 When Do We Have β∗ = β?

As we have noted, an AM method for which the w3PP holds is in the SUMMA2 class,

so that β∗ = β. We can formulate this in the language of MM as follows:

g(x|xk−1)− g(x|xk) ≥ f(xk)− f(x) (7.6)

for all x. In the language of PMA it becomes

d(x, xk−1)− d(x, xk) ≥ f(xk)− f(x) (7.7)

for all x.

We know that all PMAB algorithms are in the SUMMA class. Since PMA is

equivalent to MM, this tells us that all MM algorithms for which g(x|z) − f(x) is

a Bregman distance will have β∗ = β. As we shall see in the next section, the

Auslender–Teboulle theory allows us to generalize this result.

8 The Auslender–Teboulle Theory

In [2] Auslender and Teboulle consider proximal minimization algorithms. They show

that, if the distance d has associated with it what they call “an induced proximal

distance”h(x, z) , then β∗ = β. It can be shown that, whenever there is an induced

proximal distance, then, for any x, we have

h(x, xk)− h(x, xk+1) ≥ f(xk)− f(x) ≥ 0. (8.8)
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Consequently, the algorithm falls into the SUMMA2 class, for which β∗ = β is always

true.

Auslender and Teboulle consider two types of distances d for which there are

induced proximal distances h: the first type are the Bregman distances, which are

self-proximal in the sense that d = h; the second type are those having the form

d(x, z) = dφ(x, z)
.
=

J∑
j=1

zjφ(
xj
zj

),

for functions φ having certain properties to be discussed below. In such cases the in-

duced proximal distance is h(x, z) = φ
′′
(1)KL(x, z), where KL(x, z) is the Kullback–

Leibler distance,

KL(x, z) =
J∑
j=1

xj log
xj
zj

+ zj − xj.

Then we have

φ
′′
(1)
(
KL(x̂, xk)−KL(x̂, xk+1)

)
≥ f(xk)− f(x̂). (8.9)

The Hellinger distance,

H(x, z) =
J∑
j=1

(
√
xj −

√
zj)

2,

fits into this framework.

The required conditions on the function φ(t) are as follows: φ : R → (−∞,+∞]

is lower semi-continuous, proper and convex, with dom φ ⊆ R+, and dom ∂φ = R++.

In addition, the function φ is C2, strictly convex, and nonnegative on R++, with

φ(1) = φ′(1) = 0, and

φ′′(1)

(
1− 1

t

)
≤ φ′(t) ≤ φ′′(1) log(t). (8.10)

For the Hellinger case we have φ(t) = (
√
t− 1)2, so that these conditions are satisfied

and we have

KL(x̂, xk)−KL(x̂, xk+1) ≥ 2
(
f(xk)− f(x̂)

)
. (8.11)

We have already seen that MM algorithms for which g(x|z)− f(x) is a Bregman

distance have β∗ = β. From [2] we learn that β∗ = β whenever g(x|z)−f(x) = dφ(x, z)

for functions φ satisfying the conditions given above.
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9 AM with the Euclidean Distance

9.1 Definitions

In this section we illustrate the use of AM to derive an iterative algorithm to minimize

the function f(x) = ‖b−Ax‖2, where A is an I by J real matrix and b an I by 1 real

vector. Let R be the set of all I by J arrays r with entries ri,j such that
∑J

j=1 ri,j = bi,

for each i. Let Q be the set of all I by J arrays of the form q(x), where q(x)i,j = Ai,jxj.

For any vectors u and v with the same size, define

E(u, v) =
∑
n

(un − vn)2. (9.1)

9.2 Pythagorean Identities

We begin by minimizing E(r, q(x)) over all r ∈ R. We have the following proposition.

Proposition 9.1 For all x and r we have

E(r, q(x)) = E(r(x), q(x)) + E(r, r(x)), (9.2)

where

r(x)i,j = Ai,jxj +
1

J
(bi − Axi). (9.3)

Therefore, r = r(x) is the minimizer of E(r, q(x)).

Now we minimize E(r(x), q(z)) over z. We have the following proposition.

Proposition 9.2 For all x and z we have

E(r(x), q(z)) = E(r(x), q(Lx)) +
J∑
j=1

cj(Lxj − zj)2, (9.4)

where cj =
∑I

i=1A
2
i,j and

(Lx)j = Lxj
.
= xj +

1

Jcj

I∑
i=1

Ai,j(bi − Axi). (9.5)

We omit the proofs of these propositions, which are not deep, but involve messy

calculations. Note that

‖b− Ax‖2 = f(x) = JE(r(x), q(x)). (9.6)
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9.3 The AM Iteration

The iterative step of the algorithm is then

xkj = Lxk−1j = xk−1j +
1

Jcj

I∑
i=1

Ai,j(bi − Axk−1i ). (9.7)

Applying (9.2) and (9.4) we obtain

f(xk−1) = JE(r(xk−1), q(xk−1)) = JE(r(xk−1), q(xk)) + J

J∑
j=1

cj(x
k
j − xk−1j )2

= JE(r(xk), q(xk)) + JE(r(xk−1), r(xk)) + J

J∑
j=1

cj(x
k
j − xk−1j )2

= f(xk) + JE(r(xk−1), r(xk)) + J

J∑
j=1

cj(x
k
j − xk−1j )2.

Therefore,

f(xk−1)− f(xk) = JE(r(xk−1), r(xk)) + J
J∑
j=1

cj(x
k
j − xk−1j )2 ≥ 0,

or

f(xk−1)− f(xk) ≥ J
J∑
j=1

cj(x
k
j − xk−1j )2 ≥ 0, (9.8)

from which it follows that the sequence {f(xk)} is decreasing and the sequence

{
∑J

j=1 cj(x
k
j − xk−1j )2} converges to zero.

The inequality in (9.8) is the First Monotonicity Property for the Euclidean

case. Since the sequence {E(b, Axk)} is decreasing, the sequences {Axk} and {xk}
are bounded; let x∗ be a cluster point of the sequence {xk}. Since the sequence

{
∑J

j=1 cj(x
k
j − xk−1j )2} converges to zero, it follows that x∗ = Lx∗.

9.4 Useful Lemmas

We now present several useful lemmas.

Lemma 9.1 For all x and z we have

E(r(x), r(z)) =
J∑
j=1

cj(xj − zj)2 −
1

J

I∑
i=1

(Axi − Azi)2. (9.9)

12



Lemma 9.2 For all x and z we have

1

J

I∑
i=1

(Axi − Azi)2 ≥
1

J2

J∑
j=1

1

cj

(
I∑
i=1

Ai,j(Axi − Azi)

)2

. (9.10)

Proof: Use Cauchy’s Inequality.

Lemma 9.3 For all x and z we have

E(r(x), r(z)) ≥
J∑
j=1

cj(Lxj − Lzj)2. (9.11)

It follows from these lemmas that this iterative algorithm is in the SUMMA2 class;

for any x we have

J

J∑
j=1

cj(Lxj − xkj )2 − J
J∑
j=1

cj(Lxj − xk+1
j )2

≥ f(xk)− f(x) + J
J∑
j=1

cj(Lxj − xj)2. (9.12)

Consequently, the sequence f(xk)} converges to the minimum of the function f(x),

which must then be f(x∗), and {xk} must converge to x∗.

9.5 Characterizing the Limit

The following proposition characterizes the limit x∗.

Proposition 9.3 The choice of x̂ = x∗ minimizes the distance
∑J

j=1 cj(x̂j − x0j)
2

over all minimizers x̂ of f(x) = ‖b− Ax‖2.

Proof: Let x̂ be an arbitrary minimizer of f(x). Using the Pythagorean identities

we find that

JE(r(xk), q(x̂)) = f(x̂) + J
J∑
j=1

cj(Ax̂i − Axk)i)2 −
I∑
i=1

(Ax̂i − Axki )2,

and

JE(r(xk), q(x̂)) = f(xk+1) + JE(r(xk), r(xk+1)) + J
J∑
j=1

cj(x̂j − xk+1
j )2.
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Therefore,

J
J∑
j=1

cj(x̂j − xkj )2 − J
J∑
j=1

cj(x̂j − xk+1
j )2

= f(xk+1)− f(x̂) + JE(r(xk), r(xk+1)) +
I∑
i=1

(Ax̂i − Axki )2.

Note that the right side of the last equation depends only on Ax̂ and not directly on

x̂ itself; therefore the same is true of the left side. Now we sum both sides over the

index k to find that
∑J

j=1 cj(x̂j − x0j)2 −
∑J

j=1 cj(x̂j − x∗j)2 does not depend directly

on the choice of x̂. The assertion of the proposition follows.

9.6 SUMMA for the Euclidean Case

To get xk we minimize

Gk(x) = JE(r(xk−1), q(x)) = JE(r(x), q(x)) +
(
JE(r(xk−1), q(x))− JE(r(x), q(x))

)
= f(x) + gk(x),

where

gk(x) =
(
JE(r(xk−1), q(x))− JE(r(x), q(x))

)
= JE(r(xk−1), r(x)).

From (9.9) we have

gk(x) = J
J∑
j=1

cj(x
k−1
j − xj)2 −

I∑
i=1

(Axk−1i − Axi)2. (9.13)

From

Gk(x)−Gk(x
k) =

JE(r(xk−1), q(x))− JE(r(xk−1), q(xk)) = J

J∑
j=1

cj(x
k
j − xj)2, (9.14)

we see that

Gk(x)−Gk(x
k) ≥ gk+1(x),

for all x, so that the SUMMA Inequality holds in this case. Therefore, we have

gk(x)− gk+1(x) ≥ f(xk)− f(x),

for all x, and so

gk(x̂)− gk+1(x̂) ≥ f(xk)− f(x̂) ≥ f(xk)− f(xk+1). (9.15)

This is the Second Monotonicity Property for the Euclidean case.
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9.7 Using the Landweber Algorithm

It is of some interest to consider an alternative approach, using the Landweber (LW)

algorithm. The iterative step of the LW algorithm is

xkj = xk−1j + γ

I∑
i=1

Ai,j(bi − Axk−1i ), (9.16)

where 0 < γ < 2
ρ(ATA)

. We define βj = 1
Jcj

, Bi,j =
√
βjAi,j, and zj = xj/

√
βj. Then

Bz = Ax. The LW algorithm, applied to Bz = b and with γ = 1, is

zk = zk−1 +BT (b−Bzk−1). (9.17)

Since the trace of BTB is one, the choice of γ = 1 is allowed. It is known that the LW

algorithm converges to the minimizer of ‖b − Bz‖ for which ‖z − z0‖ is minimized.

Converting back to the original xk, we find that we get the same iterative sequence

that we got using the AM method. Moreover, we find once again that the sequence

{xk} converges to the minimizer x∗ of f(x) for which the distance
∑J

j=1 cj(x̂j − x0j)2

is minimized over all minimizers x̂ of f(x).

The Landweber algorithm applied to the original problem of minimizing f(x) =

‖Ax− b‖2 has the iterative step

xk = xk−1 − γAT (Axk−1 − b), (9.18)

where 0 < γ < 2
ρ(ATA)

. The sequence {xk} converges to the minimizer x∗ of f(x) that

minimizes ‖x̂− x0‖ over all minimizers x̂ of f(x).

10 The SMART

In this section we discuss the simultaneous multiplicative algebraic reconstruction

technique (SMART) [17, 27, 11, 4, 5, 6]. A key step in the proof of convergence is

showing that the SMART is in the SUMMA class.

10.1 The Kullback–Leibler or Cross-Entropy Distance

The Kullback–Leibler distance is quite useful in the discussions that follow. For

positive numbers s and t, the Kullback–Leibler distance from s to t is

KL(s, t) = s log
s

t
+ t− s. (10.1)

Since, for x > 0 we have

x− 1− log x ≥ 0

15



and equal to zero if and only if x = 1, it follows that

KL(s, t) ≥ 0,

and KL(s, s) = 0. We use limits to define KL(0, t) = t and KL(s, 0) = +∞. Now

we extend the KL distance to nonnegative vectors component-wise. The following

lemma is easy to prove.

Lemma 10.1 For any nonnegative vectors x and z, with z+ =
∑J

j=1 zj > 0, we have

KL(x, z) = KL(x+, z+) +KL(x,
x+
z+
z). (10.2)

We can extend the KL distance in the obvious way to infinite sequences with non-

negative terms, as well as to nonnegative functions of continuous variables.

10.2 The Problem to be Solved

We assume that y is a positive vector in RI , P an I by J matrix with nonnegative

entries Pi,j, sj =
∑I

i=1 Pi,j > 0, and we want to find a nonnegative solution or

approximate solution x for the linear system of equations y = Px. The SMART will

minimize KL(Px, y), over x ≥ 0. For notational simplicity we shall assume that the

system has been normalized so that sj = 1 for each j.

10.3 The SMART Iteration

The SMART algorithm [17, 27, 11, 4, 6] minimizes the function f(x) = KL(Px, y),

over nonnegative vectors x. Having found the vector xk−1, the next vector in the

SMART sequence is xk, with entries given by

xkj = xk−1j exp
( I∑
i=1

Pij log(yi/(Px
k−1)i)

)
. (10.3)

The iterative step of the SMART can be decsribed as xk = Sxk−1, where S is the

operator defined by

(Sx)j
.
= xj exp

( I∑
i=1

Pij log(yi/(Px)i)
)
. (10.4)

In our proof of convergence of the SMART we will show that any cluster point x∗ of

the SMART sequence {xk} is a fixed point of the operator S. To avoid pathological

cases in which Px∗i = 0 for some index i, we can assume, at the outset, that all the

entries of P are positive. This is wise, in any case, since the model of y = Px is

unlikely to be exactly accurate in applications.
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10.4 The SMART as AM

In [4] the SMART was derived using the following alternating minimization (AM)

approach.

For each x, let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (10.5)

and

q(x)ij = xjPij. (10.6)

In the iterative step of the SMART we get xk by minimizing the function

Gk(x) = KL(q(x), r(xk−1)) =
I∑
i=1

J∑
j=1

KL(q(x)ij, r(x
k−1)ij) (10.7)

over x ≥ 0. Note that f(x) = KL(Px, y) = KL(q(x), r(x)). We have the following

helpful Pythagorean identities:

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz); (10.8)

and

KL(q(x), r(z)) = KL(q(Sz), r(z)) +KL(x, Sz). (10.9)

Note that it follows from Equation (10.2) that KL(x, z)−KL(Px, Pz) ≥ 0.

From the Pythagorean identities we find that xk is obtained by minimizing

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1), (10.10)

so that SMART is an AF algorithm and

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1). (10.11)

Consequently, the sequence {f(xk)} is decreasing and the sequences {Pxk} and {xk}
are bounded. From

Gk(x)−Gk(x
k) = KL(x, xk) ≥ KL(x, xk)−KL(Px, Pxk) = gk+1(x)

we conclude that the SMART is in the SUMMA class. It follows from our discussion

of the SUMMA Inequality that, for all x ≥ 0,

gk(x) + f(x) ≥ gk+1(x) + f(xk). (10.12)
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Since
J∑
j=1

xkj ≤
I∑
i=1

yi,

we see once again that the sequence {xk} is bounded and therefore has a cluster point,

x∗, with f(xk) ≥ f(x∗) for all k and Sx∗ = x∗.

10.5 MM in SMART

At each step of the SMART we minimize the function KL(q(x), r(xk−1)) to get xk.

From

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz) ≥ KL(Px, y) (10.13)

we see that the function KL(q(x), r(z)) = g(x|z) is a majorizing function for the

function f(x) = KL(Px, y).

10.5.1 The First Monotonicity Property for SMART

Using the Pythagorean identities we have

KL(Pxk, y)−KL(Pxk+1, y) ≥ KL(xk, xk+1). (10.14)

10.5.2 The Second Monotonicity Property for SMART

Let x̂ be any minimizer of KL(Px, y). We then have

KL(x̂, xk)−KL(x̂, xk+1) = KL(Pxk+1, y)−KL(Px̂, y)+

KL(Px̂, Pxk) +KL(xk+1, xk)−KL(Pxk+1, Pxk) ≥ 0. (10.15)

In fact, there is a somewhat more general version of (10.15), that tells us that,

since Sx∗ = x∗ and f(xk) ≥ f(x∗), we can replace x̂ with x∗ in (10.15), to get

KL(x∗, xk)−KL(x∗, xk+1) = KL(Pxk+1, y)−KL(Px∗, y)+

KL(Px∗, Pxk) +KL(xk+1, xk)−KL(Pxk+1, Pxk) ≥ 0. (10.16)

From (10.16) it follows that the sequence {f(xk)} converges to f(x∗). Since the

SMART is in SUMMA, we know that f(x∗) must be the minimum of f(x). Since a

subsequence of {KL(x∗, xk)} converges to zero, it follows that {xk} converges to x∗.
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10.6 Characterizing the Limit of SMART

Let x̂ be any minimizer of KL(Px, y). From Equation (10.15) we see that the dif-

ference KL(x̂, xk) − KL(x̂, xk+1) depends only on Px̂, and not on x̂ itself. Sum-

ming over the index k on both sides and “telescoping” , we find that the difference

KL(x̂, x0)−KL(x̂, x∗) also depends only on Px̂, and not on x̂ itself. It follows that

x̂ = x∗ is the minimizer of f(x) for which KL(x̂, x0) is minimized. If y = Px has

nonnegative solutions, and the entries of x0 are all equal to one, then x∗ maximizes

the Shannon entropy over all nonnegative solutions of y = Px.

The following theorem summarizes the situation with regard to the SMART [4,

5, 6].

Theorem 10.1 In the consistent case, in which the system y = Px has nonnegative

solutions, the sequence of iterates of SMART converges to the unique nonnegative

solution of y = Px for which the distance KL(x, x0) is minimized. In the inconsistent

case it converges to the unique nonnegative minimizer of the distance KL(Px, y) for

which KL(x, x0) is minimized. In the inconsistent case, if P and every matrix derived

from P by deleting columns has full rank then there is a unique nonnegative minimizer

of KL(Px, y) and at most I − 1 of its entries are nonzero.

11 The EMML Algorithm

In this section we discuss the EMML algorithm [28, 29, 4, 5, 6]. A key step in the

proof of convergence is showing that the EMML algorithm is in the SUMMA2 class.

11.1 The EMML Iteration

Once again, we want to find a nonnegative solution or approximate solution x for the

linear system of equations y = Px. The EMML algorithm will minimize KL(y, Px).

The EMML algorithm minimizes the function f(x) = KL(y, Px), over nonnega-

tive vectors x. Having found the vector xk−1, the next vector in the EMML sequence

is xk, with entries given by

xkj = xk−1j

( I∑
i=1

Pij(yi/(Px
k−1)i)

)
. (11.1)

The iterative step of the EMML algorithm can be described as xk = Mxk−1, where

M is the operator defined by

(Mx)j
.
= xj

( I∑
i=1

Pij(yi/(Px)i)
)
. (11.2)
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As we shall see, the EMML algorithm forces the sequence {KL(y, Pxk)} to be de-

creasing. It follows that (Px∗)i > 0, for any cluster point x∗ and for all i.

11.2 The EMML as AM

Now we want to minimize f(x) = KL(y, Px). We have the following helpful Pythagorean

identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (11.3)

and

KL(r(x), q(z)) = KL(r(x), q(Mx)) +KL(Mx, z). (11.4)

Using these Pythagorean identities we see that, for {xk} given by Equation (11.1),

the sequence {KL(y, Pxk)} is decreasing and the sequences {KL(xk+1, xk)} and

{KL(r(xk), r(xk+1))} converge to zero. It follows that the EMML sequence {xk}
is bounded. In fact, we have

J∑
j=1

xkj =
I∑
i=1

yi.

Using (10.2) we obtain the following useful inequality:

KL(r(x), r(z)) ≥ KL(Mx,Mz). (11.5)

From

KL(r(x), q(xk)) = KL(r(xk), q(xk)) +KL(r(x), r(xk)) ≥ f(xk) +KL(Mx, xk+1),

and

KL(r(x), q(xk)) = KL(r(x), q(Mx))+KL(Mx, xk) = f(x)−KL(Mx, x)+KL(Mx, xk)

we have

KL(Mx, xk)−KL(Mx, xk+1) ≥ f(xk)− f(x) +KL(Mx, x). (11.6)

Note that we have used (11.5) here. Therefore, the EMML is in the SUMMA2 class.

With x∗ a cluster point, we have

KL(Mx∗, xk)−KL(Mx∗, xk+1) ≥ f(xk)− f(x∗) ≥ 0. (11.7)

Therefore, the sequence {KL(Mx∗, xk)} is decreasing, and the sequence {f(xk)} con-

verges to f(x∗). Since the EMML is in the SUMMA2 class, we know that f(x∗) is

the minimum value of f(x) and Mx∗ = x∗.

The following theorem summarizes the situation with regard to the EMML algo-

rithm [4, 5, 6].
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Theorem 11.1 In the consistent case, in which the system y = Px has nonnegative

solutions, the sequence of EMML iterates converges to a nonnegative solution of y =

Px. In the inconsistent case it converges to a nonnegative minimizer of the distance

KL(y, Px). In the inconsistent case, if P and every matrix derived from P by deleting

columns has full rank then there is a unique nonnegative minimizer of KL(y, Px) and

at most I − 1 of its entries are nonzero.

In contrast with the SMART, we have been unable to characterize the limit in terms

of the starting vector x0.

11.3 MM in EMML

At each step of the EMML algorithm we minimize KL(r(xk−1), q(x)) to get xk. From

KL(r(z), q(x)) = KL(r(x), q(x)) +KL(r(z), r(x)) (11.8)

we see that the function

KL(r(z), q(x)) = g(x|z) (11.9)

is a majorizing function for f(x) = KL(y, Px).

11.4 The First Monotonicity Property for EMML

From the Pythagorean identities we have

KL(y, Pxk)−KL(y, Pxk+1) = KL(r(xk), r(xk+1)) +KL(xk+1, xk), (11.10)

so that

KL(y, Pxk)−KL(y, Pxk+1) ≥ KL(xk+1, xk). (11.11)

The inequality in (11.11) is called the First Monotonicity Property in [19].

11.5 The Second Monotonicity Property for EMML

Let x̂ be a minimizer of f(x) = KL(y, Px). Inserting x = x̂ into Equation (11.6), we

obtain

KL(x̂, xk)−KL(x̂, xk+1) ≥ KL(y, Pxk)−KL(y, Pxk+1). (11.12)

The inequality in (11.12) is called the Second Monotonicity Property in [19].
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12 The Hellinger Distance

In [19] the authors consider extending the results concerning the KL distance to the

Hellinger distance. In particular, they explore the use of AM and MM.

12.1 The Definition of H(s, t)

For s > 0 and t > 0 the Hellinger distance from s to t is

H(s, t) = (
√
s−
√
t)2. (12.1)

As in the case of the KL distance, we can extend H to nonnegative vectors component-

wise. In this section we consider the problem of minimizing H(y, Px) given by

H(y, Px) =
I∑
i=1

(
√
yi −

√
(Px)i)

2. (12.2)

As in the KL case, we assume that sj =
∑I

i=1 Pi,j = 1 for each j.

12.2 An Alternating-Minimization Approach

In (4.2) of [19] the authors present a majorizing function to be used to generate

the iterative sequence. We can show that their majorizing function is g(x|z) =

H(r(z), q(x)), with the same notation as in the KL case. The following proposition

is essentially what appears in [19]. The proof here is simpler than in [19].

Proposition 12.1 For all x ≥ 0 and z ≥ 0 we have

J∑
j=1

Pi,j
√
xjzj ≤

√
(Px)i(Pz)i. (12.3)

Proof: We have
J∑
j=1

Pi,j
√
xj
√
zj =

J∑
j=1

√
Pi,jxj

√
Pi,jzj

≤

√√√√ J∑
j=1

Pi,jxj

√√√√ J∑
j=1

Pi,jzj =
√

(Px)i(Pz)i,

by the Cauchy Inequality.

Corollary 12.1 The function g(x|z) = H(r(z), q(x)) majorizes f(x) = H(y, Px).
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Proof: We only need to show that

I∑
i=1

J∑
j=1

√
r(z)i,jq(x)i,j ≥

I∑
i=1

√
(Px)iyi.

We have √
r(z)i,jq(x)i,j = Pi,j

√
zjxj

√
yi

(Pz)i
,

from which it follows that

I∑
i=1

J∑
j=1

√
r(z)i,jq(x)i,j =

I∑
i=1

J∑
j=1

Pi,j
√
zjxj

√
yi

(Pz)i

=
I∑
i=1

(
J∑
j=1

Pi,j
√
zjxj

)√
yi

(Pz)i

≤
I∑
i=1

(√
(Pz)i(Px)i

)√ yi
(Pz)i

=
I∑
i=1

√
(Px)iyi.

Note that Corollary 12.1 can also be obtained by using Lagrange multipliers to

minimize H(r, q(x)) over all r = {ri,j} with
∑J

j=1 ri,j = yi, for all i.

Corollary 12.2 For all x ≥ 0 and z ≥ 0 we have

I∑
i=1

√
(Px)i(Pz)i ≥

J∑
j=1

√
xjzj. (12.4)

Proof: From
J∑
j=1

Pi,j
√
xjzj ≤

√
(Px)i(Pz)i

we have
I∑
i=1

J∑
j=1

Pi,j
√
xjzj ≤

I∑
i=1

√
(Px)i(Pz)i,

so that
J∑
j=1

(
I∑
i=1

Pi,j

)
√
xjzj ≤

I∑
i=1

√
(Px)i(Pz)i.

The iterative step of the algorithm is derived by minimizing H(r(xk−1), q(x)) to

get xk, with

xkj = xk−1j

(
I∑
i=1

Pi,j

√
yi√

(Pxk−1)i

)2

. (12.5)
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We can write xk = Txk−1, where T is the operator

Txj = xj

(
I∑
i=1

Pi,j

√
yi√

(Px)i

)2

. (12.6)

Since g(x|z) majorizes f(x), it follows easily that the sequence {f(xk)} is decreasing,

so that the sequences {Pxk} and {xk} are bounded.

In the EMML case we saw that

I∑
i=1

yi =
J∑
j=1

Mxj,

while for SMART we have
I∑
i=1

yi ≥
J∑
j=1

Sxj.

In the Hellinger case we shall see that

I∑
i=1

yi ≥
J∑
j=1

Txj.

In the EMML case we have the Pythagorean identity

KL(r(x), q(z)) = KL(r(x), q(Mx)) +KL(Mx, z), (12.7)

while in the Hellinger case we have the analogous Pythagorean identity

H(r(x), q(z)) = H(r(x), q(Tx)) +H(Tx, z), (12.8)

so that

H(r(x), q(x)) = H(r(x), q(Tx)) +H(Tx, x). (12.9)

We note that, unlike the KL distance, the Hellinger distance is symmetric; we have

H(x, z) = H(z, x). (12.10)

Lemma 12.1 For every x ≥ 0 we have

H(r(x), q(Tx)) =
I∑
i=1

yi −
J∑
j=1

(Tx)j ≥ 0, (12.11)

so that the set {Tx|x ≥ 0} is bounded.
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Since minimizing f(x) = H(r(x), q(x)) is equivalent to minimizing H(r(x), q(Tx)), it

follows that minimizing f(x) is equivalent to maximizing
∑J

j=1 Txj. In the EMML

case we have

f(x) = KL(y, Px) = KL(r(x), q(x)), (12.12)

while in the Hellinger case we have the analogous result

f(x) = H(y, Px) = H(r(x), q(x)). (12.13)

In the EMML case we use the other Pythagorean identity

KL(r(z), q(x)) = KL(r(x), q(x)) +KL(r(z), r(x)) (12.14)

to show that

KL(r(z), q(x)) = g(x|z) (12.15)

is a majorizing function for f(x) = KL(y, Px). In the Hellinger case we have shown

that

H(r(z), q(x)) ≥ H(r(x), q(x)), (12.16)

for all x ≥ 0. It would be nice if we had an analogue of Equation (12.14) for the

Hellinger case. Said another way, can we find a simple expression for

H(r(z), q(x))−H(r(x), q(x))?

By analogy with the EMML case, we might expect to have

H(r(z), q(x))−H(r(x), q(x)) = H(r(z), r(x)). (12.17)

Actually, we don’t need this much; it would be enough to prove that Equation (12.17)

holds for x = Tz.

It is worth noting here that perhaps we should consider analogies, not just with

the EMML, but with the SMART also. The Hellinger distance is symmetric, so that

H(y, Px) = H(Px, y), whereas KL(y, Px) and KL(Px, y) are not the same. In the

SMART case we have the inequality

KL(x, z) ≥ KL(Px, Pz). (12.18)

This holds as well for the Hellinger distance.
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Lemma 12.2 For all x ≥ 0 and z ≥ 0 we have

H(x, z) ≥ H(Px, Pz). (12.19)

Proof: We have

H(Px, Pz) =
I∑
i=1

(
(Px)i + (Pz)i − 2

√
(Px)i(Pz)i

)

=
J∑
j=1

(xj + zj)− 2
I∑
i=1

√
(Px)i(Pz)i

≤
J∑
j=1

(xj + zj)− 2
J∑
j=1

√
xjzj,

by (12.4).

12.3 Convergence

From the discussion above we have

H(y, Pxk)−H(y, Pxk+1) ≥ H(xk, xk+1), (12.20)

so that the sequence {H(y, Pxk)} is decreasing and the sequence {H(xk, xk+1)} con-

verges to zero. Since the sequence {xk} is bounded, it has a cluster point, call it x̂

which must then be a fixed point of T . The sequence {H(y, Pxk)} then converges to

H(y, P x̂). In [19] it was shown that, if x̂ minimizes f(x), then

KL(x̂, xk)−KL(x̂, xk+1) ≥ 2
(
H(y, Pxk+1)−H(y, P x̂)

)
. (12.21)

It follows that the sequence {xk} converges to x̂.

13 Pearson’s φ2 Distance

In [19] the authors consider extending the results concerning the KL and Hellinger

distances to the φ2-distance of Pearson . In particular, they explore the use of AM

and MM.
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13.1 The Definition of φ2(s, t)

For s > 0 and t > 0 Pearson’s φ2 distance from s to t is

φ2(s, t) =
(s− t)2

t
(13.1)

As in the cases of the KL and H distances, we can extend φ2 to nonnegative vectors

component-wise. Note that φ2(s, t) is not symmetric. In this section we consider the

problem of minimizing φ2(y, Px) given by

φ2(y, Px) =
I∑
i=1

(yi − (Px)i)
2

(Px)i
. (13.2)

As in the previous cases, we assume that sj = 1 for each j.

13.2 An Alternating-Minimization Approach

In (5.4) of [19] the authors present a majorizing function to be used to generate

the iterative sequence. We can show that their majorizing function is g(x|z) =

φ2(r(z), q(x)), with the same notation as in the KL and H cases. The following

proposition is essentially what appears in [19]; the proof given here is simpler, how-

ever.

Proposition 13.1 For all x > 0 and z > 0 we have

J∑
j=1

Pi,j
x2j
zj
≥ (Px)2i

(Pz)i
. (13.3)

Proof: We have

(Px)i =
J∑
j=1

Pi,jxj =
J∑
j=1

√
Pi,jzj

√
Pi,j

x2j
zj

≤

√√√√ J∑
j=1

Pi,jzj

√√√√ J∑
j=1

Pi,j
x2j
zj
,

so that

(Px)2i ≤ (Pz)i

J∑
j=1

Pi,j
x2j
zj
.

Corollary 13.1 For all x > 0 and z > 0 we have

I∑
i=1

(Px)2i
(Pz)i

≤
J∑
j=1

x2j
zj
. (13.4)
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Corollary 13.2 The function g(x|z) = φ2(r(z), q(x)) majorizes φ2(y, Px).

Note that Corollary 13.2 can also be obtained by using Lagrange multipliers to min-

imize φ2(r, q(x)) over all r = {ri,j} with
∑J

j=1 ri,j = yi, for all i.

Corollary 13.3 For each x > 0 and z > 0 we have

φ2(x, z) ≥ φ2(Px, Pz). (13.5)

The iterative step of the algorithm is derived by minimizing φ2(r(xk−1), q(x)) to

get xk given by

xkj = xk−1j

√√√√ I∑
i=1

Pi,j

(
yi

(Pxk−1)i

)2

. (13.6)

With R the operator defined by

(Rx)j = Rxj
.
= xj

√√√√ I∑
i=1

Pi,j

(
yi

(Px)i

)2

, (13.7)

we can write xk = Rxk−1. An easy calculation shows that φ2(Rz, x) = φ2(q(Rz), q(x))

and

φ2(r(z), q(x)) = φ2(r(z), q(Rz)) + φ2(Rz, x). (13.8)

Since g(x|z) majorizes f(x) it follows that the sequence {f(xk)} is decreasing, so that

the sequences {Pxk} and {xk} are bounded. We also have

φ2(r(x), q(Rx)) =
J∑
j=1

(Rx)j −
I∑
i=1

yi ≥ 0.

14 Just a Coincidence?

As we have seen, the KL distance appears, apparently uninvited, in (12.21). In [2] a

similar thing happens, as (14.1) shows, prompting us to ask if this is just a coincidence,

or if something deeper is going on here.

In proximal minimization algorithms (PMA) we obtain an iterative method for

minimizing a function f(x) by minimizing

f(x) + d(x, xk−1)
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to get the next iterate xk. Here d(x, z) ≥ 0 and d(x, x) = 0, for all x and z. It follows

easily that the sequence {f(xk)} is decreasing to a limit β∗ ≥ −∞. We have discussed

what additional restrictions should be placed on the distance d to guarantee that

β∗ = β
.
= inf

x
{f(x)}.

For the Hellinger distance we have H(x, z) = dφ(x, z), for φ(t) = (
√
t− 1)2, so that,

according to [2],

KL(x̂, xk)−KL(x̂, xk+1) ≥ 2
(
f(xk)− f(x̂)

)
. (14.1)

This looks a lot like (12.21).

Of course, the problems are not quite the same; in [2] they are trying to minimize

some unrelated function f(x), using the Hellinger distance in the PMA framework,

while we are trying to minimize H(y, Px) = H(Px, y) using alternating minimiza-

tion. However, the resemblance between (12.21) and (14.1) must be more than a

coincidence, mustn’t it?
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