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Abstract

The EM algorithm is not a single algorithm, but a framework for the design
of iterative likelihood maximization methods for parameter estimation. Any
algorithm based on the EM framework we refer to as an “EM algorithm”.
Because there is no inclusive theory that applies to all EM algorithms, the
subject is a work in progress, and we find it appropriate to approach the subject
through examples, each chosen to illustrate an important aspect of the subject.

We begin on a positive note with the EM algorithm for finite mixtures of
Poisson random variables, which arises in single-photon emission tomography
(SPECT). In this case, for which we have a nearly complete theory of con-
vergence, there emerges quite naturally a topology on the parameter space
based on the cross-entropy, or Kullback-Leibler, distance between non-negative
vectors. Because the distributions involve discrete probabilities, there is no
difficulty in describing the EM framework.

Our next example involves censored exponentially distributed data. Now
the distributions involve probability density functions, which complicates the
definition of an EM algorithm. This gives us an opportunity to discuss this
issue and to illustrate how it might be resolved.

Our third example involves the finite sum of independent, uniformly dis-
tributed random variables. Once again, the use of probability density functions
complicates the statement of the EM algorithm, but provides an opportunity to
illustrate yet another method for overcoming this problem. As an added bonus,
it provides an example of a sequence generated by an EM algorithm that does
not converge to the maximum likelihood (ML) solution.

Our final example involves finite mixtures of either probability functions or
probability density functions. The theory for the discrete case follows closely
that for the mixtures of Poisson random variables. The theory for the contin-
uous case is novel in ways reminiscent of that for the list-mode EM algorithm
in SPECT.

Figuring out how to formulate the EM algorithm and proving convergence
are not our only concerns. Convergent EM algorithms are well known to con-
verge slowly, and there is considerable attention paid to accelerated methods. It
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also is sometimes the case, particularly in image reconstruction from noisy data,
that the ML solution is not particularly helpful. In such cases, it is common to
regularize by adding a penalty function to the likelihood. Finding efficient and
effective methods for generating regularized ML solutions is another important
research area.

As such, this subject remains a work in progress. The topology on the
space of parameters varies with the particular application and there is no gen-
eral theory of convergence; even the basic formulation of the EM algorithm
is inadequate when probability density functions are involved. Consequently,
each application requires its own theory. In some cases, such as image recon-
struction, the maximizer of likelihood may not provide a useful solution and
regularization is needed. It is well known that EM algorithms can be slow
to converge, or fail to converge at all. Research is ongoing to find appropri-
ate assumptions to guarantee convergence and effective methods to accelerate
convergence.

1 Introduction

The EM algorithm is not a single algorithm, but a framework for the design of iterative

likelihood maximization methods for parameter estimation. We begin with the usual

formulation of the EM algorithm, and then outline several of the issues we shall treat

in more detail subsequently.

1.1 What is the EM Algorithm?

We have one realization y ∈ RN of the random vector Y governed by the probability

function (pf) or probability density function (pdf) g(y|x), where x is a vector of

parameters to be determined. The maximum-likelihood estimate of x is a vector xML

that maximizes the likelihood function

L(x) = g(y|x), (1.1)

over x ∈ X, the set of all admissible values of the parameter vector. In those situations

in which an xML maximizing L(x) cannot be obtained in closed form, one can employ

an iterative method, such as the Newton-Raphson algorithm, to obtain a sequence

{xk} that, in the best cases, converges to some xML. The EM algorithm, or, more

precisely, the EM “algorithm”, since it is really more a template for the design of

algorithms, is a method for generating such iterative procedures.

To employ the EM algorithm, we imagine that the given data vector y is somehow

incomplete, that there is another random vector Z related to Y , the complete data,

taking values in RM and governed by the pf or pdf f(z|x), such that, had we been
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able to obtain one realization z of Z, maximizing f(z|x) would have been simpler

than maximizing g(y|x). The basic idea of the EM algorithm is to exploit this greater

calculational simplicity.

When the deterministic variable z is replaced in f(z|x) by the random variable Z,

we obtain random variables f(Z|x) and log f(Z|x), for each fixed x. Having found xk,

we calculate, for each fixed x, the expected value of the random variable log f(Z|x),

conditioned on y and xk. What we get is then a deterministic function of x, which

we then maximize to get xk+1.

In some applications, the complete data Z arises naturally from the problem,

while in other cases the user must imagine complete data, with respect to which the

obtained data is incomplete. This choice in selecting the complete data can be helpful

in speeding up the algorithm.

The EM algorithm proceeds in two steps: given the data y and the current es-

timate xk, the (E) step of the EM algorithm is to calculate E(log f(Z|x)|y, xk), the

conditional expected value of log f(Z|x), given y and xk, and the (M) step is to max-

imize E(log f(Z|x)|y, xk) with respect to x to obtain xk+1. In order to implement

this method, we need to postulate the precise manner by which Y depends on Z, and

g(y|x) on f(z|x), so that we can calculate E(log f(Z|x)|y, xk).

1.2 What is E(log f(Z|x)|y, xk)?

Most papers and books on the EM algorithm assume that there is a function h :

RM → RN , such that Y = h(Z) and that

g(y|x) =
∫
Z(y)

f(z|x)dz, (1.2)

where

Z(y) = h−1({y}) = {z|h(z) = y}. (1.3)

This is fine in the discrete case, when both g(y|x) and f(z|x) are probability functions

and the integral is replaced by a sum, but it can be problematic in the continuous

case, when they are probability density functions. For example, in the latter case, it

is quite possible that N < M and for the set Z(y) to have measure zero in RM , in

which case the integral in Equation (1.2) has the value zero. Reformulating the EM

algorithm to avoid this difficulty is one of the topics we shall take up in what follows.
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1.3 The Key Issue

In order to develop a reasonable theory of the EM algorithm, it seems that we must

somehow give meaning to the integral in Equation (1.2). As a reminder that the inte-

gral is not necessarily the ordinary integral on RN , and will vary from one application

to another, we shall rewrite Equation (1.2) omitting the “dz” , so that

g(y|x) =
∫
Z(y)

f(z|x). (1.4)

As we shall see, different applications will require different interpretations of this

integral. In each case, however, if we can find a meaning for the integral, with respect

to which Equation (1.4) is valid, then we can define the conditional pdf of the random

vector Z, conditioned on y, as the function b(z|y, x), defined for z ∈ Z(y) by

b(z|y, x) = f(z|x)/g(y|x). (1.5)

It will then follow from Equation (1.4) that b(z|y, x) is a pdf on the set Z(y), that is,∫
Z(y)

b(z|y, x) = 1, (1.6)

where the integral is interpreted as required by the problem. Then we have

E(log f(Z|x)|y, xk) =
∫
Z(y)

b(z|y, xk) log f(z|y, x). (1.7)

This is the (E)-step of the EM algorithm.

In the (M)-step of the EM algorithm, we maximize

E(log f(Z|x)|y, xk) =
∫
Z(y)

b(z|y, xk) log f(z|y, x)

as a function of x, to get the next iterate, x = xk+1. Before we develop the theory

further, let us consider some examples of incomplete- and complete-data models.

1.4 Other Issues

It is well known that convergent EM algorithms can be slow to converge. Considerable

effort has been spent on accelerating EM algorithms. One approach is to select the

complete data in a way that leads to fast convergence. A good source is the 1997

paper by Meng and van Dyk [38], which also includes commentary by other experts

in the field. We shall discuss briefly the issue of acceleration.

Another issue we shall touch on is the need for regularization. It can happen that

the likelihood maximizer is not a useful solution; this occurs, in particular, in image
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processing with noisy data. In such cases, a penalty function can be added to the

likelihood function to obtain a regularized solution. We shall mention some ways in

which this can be done.

Convergence is the final issue we shall consider. Before we can speak of conver-

gence of the sequence {xk} we need a topology on the parameter set X. It is common

to assume that X is a subset of a Euclidean space, with the metric induced by the

2-norm of vectors. However, as we shall see, it is sometimes more useful to permit

other distances, such as the cross-entropy, or Kullback-Leibler distance [31] between

non-negative vectors. Even without a topology on X, we can ask if the sequence

{L(xk)} converges, or if the sequence {f(z|xk)} converges.

To begin our discussion on a positive note, we start with the discrete case, in which

the random vectors have discrete values and only probability functions are involved.

2 The Discrete Case

When Z is a discrete random variable, we do have

g(y|x) =
∑

z∈Z(y)

f(z|x). (2.1)

The conditional probability function for Z, given Y = y, is defined by

b(z|y, x) = f(z|x)/g(y|x), (2.2)

for z in the set Z(y), and b(z|y, x) = 0 otherwise. Then we have

f(z|x) = b(z|y, x)g(y|x), (2.3)

for all z ∈ Z(y).

2.1 The (E) Step

Given the current estimate xk of x, we compute the conditional expected value of the

random variable log f(Z|x), conditioned on Y = y and using xk as the true value of

the parameter; this is the (E) step. This gives

E(log f(Z|x)|y, xk) =
∑
z

(log f(z|x))b(z|y, xk). (2.4)
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2.2 The (M) Step

The (M) step is to maximize E(log f(Z|x)|y, xk) with respect to the variable x, to

get the next estimate xk+1. This means that we maximize∑
z∈Z(y)

(log f(z|x))b(z|y, xk),

over all admissible values of the parameter vector x. We can simplify the analysis

using the Kullback-Leibler cross-entropy distance.

2.3 Cross-Entropy or the Kullback-Leibler Distance

For positive numbers u and v, the Kullback-Leibler distance from u to v is

KL(u, v) = u log
u

v
+ v − u. (2.5)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL distance

is extended to nonnegative vectors component-wise, so that for nonnegative vectors

a and b we have

KL(a, b) =
J∑

j=1

KL(aj, bj). (2.6)

One of the most useful facts about the KL distance is contained in the following

lemma.

Lemma 2.1 For non-negative vectors a and b, with b+ =
∑J

j=1 bj > 0, we have

KL(a, b) = KL(a+, b+) + KL(a,
a+

b+

b). (2.7)

2.4 Using the KL Distance

To simplify notation, let us write

b(xk) = b(z|y, xk),

and

f(x) = f(z|x).

Then the KL distance from the function of z denoted b(xk) to the function of z

denoted f(x) is

KL(b(xk), f(x)) =
∑
z

(
b(z|y, xk) log

(b(z|y, xk)

f(z|x)

)
+ f(z|x)− b(z|y, xk)

)
. (2.8)
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Minimizing KL(b(xk), f(x)) is equivalent to maximizing E(log(f(Z|x))|y, xk), since

∑
z

f(z|x) = 1,

for each x. We have the following helpful results.

Lemma 2.2 For any x we have

KL(b(x), f(x)) = − log g(y|x). (2.9)

Proof: Since
∑

z f(x) = 1 and
∑

z b(x) = 1, we know that

KL(b(x), f(x)) =
∑
z

b(z|y, x) log
b(z|y, x)

f(z|x)
=

∑
z∈Z(y)

b(z|y, x) log
b(z|y, x)

f(z|x)
.

But, by Equation (2.3), we have

log
b(z|y, x)

f(z|x)
= − log g(y|x),

for all z ∈ Z(y). Therefore,

KL(b(x), f(x)) = − log g(y|x)
∑

z∈Z(y)

b(z|y, x) = − log g(y|x).

Corollary 2.1 The minimizers of KL(b(x), f(x)) are the maximizers of the likeli-

hood.

Lemma 2.3 For any w, we have

KL(b(w), f(x)) = KL(b(x), f(x)) + KL(b(w), b(x)). (2.10)

Proof: The proof is a simple calculation.

From what we have learned so far, we can say the following:

− log g(y|xk) = KL(b(xk), f(xk)) ≥ KL(b(xk), f(xk+1))

= KL(b(xk+1), f(xk+1))+KL(b(xk), b(xk+1)) = − log g(y|xk+1)+KL(b(xk), b(xk+1)).

Since g(y|xk) is a probability function, we know that 0 < g(y|xk) ≤ 1 for all y, so that

− log g(y|xk) ≥ 0 for all y. Consequently, the sequence {− log g(y|xk)} is decreasing

to a non-negative limit and the sequence {KL(b(xk), b(xk+1))} converges to zero. So,
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at the very least, we can say that, using the EM algorithm in the discrete case, the

likelihood increases with each step of the iteration.

Just as most books and papers that discuss the EM algorithm contain Equation

(1.2), they also assert that the EM algorithm increases likelihood. As we have just

seen, in the discrete case, the fact that likelihood is increasing is a consequence of

Equation (2.1). In the continuous case, Equation (1.2) is always used to show that

likelihood is increasing; if we cannot adopt Equation (1.2), we will need to interpret

it in such a way that we can still say that likelihood is increasing.

We would like to be able to prove that the sequence {xk} converges to x̂, where x̂ is

some likelihood maximizer. Failing that, we would like to prove that the sequence of

discrete probabilities {f(xk)} converges to f(x̂), or even that the sequence {g(y|xk)}
converges to g(y|xML) = g(y|x̂). However, it appears that we cannot do all of these

without additional assumptions. The assumptions we shall introduce shortly will seem

unmotivated and quite specialized, but are motivated by the proof of convergence

given for the EM algorithm in the case of Poisson sums in Byrne (2005)[10].

2.5 The Four-Point Property

In [16] Csiszár and Tusnády consider fairly general alternating minimization methods

from a geometric point of view. Their three-point and four-point properties play

crucial roles in proving convergence. We consider now how their formulation translates

into the problem at hand.

Our objective is to maximize the likelihood g(y|x) by minimizing the function

KL(b(x), f(x)). The EM algorithm in this case consists of minimizing KL(b(xk−1), f(z))

to get z = xk, and then minimizing KL(b(x), f(xk)) to get x = xk. The three-point

property in this case is

KL(b(w), f(x)) ≥ KL(b(x), f(x)) + KL(b(w), b(x)). (2.11)

The three-point property holds here because, according to Equation (2.10), the in-

equality is actually an equality.

The four-point property, which may or may not hold, translates into

KL(b(w), b(x)) ≥ KL(b(w), f(x′))−KL(b(w), f(w′)), (2.12)

where x = w′ minimizes KL(b(w), f(x)) and w = x′ minimizes KL(b(x), f(w)).

We are particularly interested in the case in which w = x̂ is a maximizer of

likelihood, so that x̂′ = x̂. Then the three-point property implies that

KL(b(x̂), f(xk)) = KL(b(xk), f(xk)) + KL(b(x̂), b(xk)), (2.13)
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and the four-point property tells us that

KL(b(x̂), b(xk−1)) ≥ KL(b(x̂), f(xk))−KL(b(x̂), f(x̂)). (2.14)

Combining Equations (2.13) and (2.14), we get

KL(b(x̂), b(xk−1))−KL(b(x̂), b(xk)) ≥ KL(b(xk), f(xk))−KL(b(x̂), f(x̂)), (2.15)

from which we can conclude that the sequence {KL(b(x̂), f(xk))} is decreasing and

the sequence {KL(b(xk), f(xk))} converges to KL(b(x̂), f(x̂)). Therefore, {g(y|xk)}
converges to g(y|xML).

To prove that the sequence {xk} converges to x̂, where x̂ is some likelihood max-

imizer, or to prove that the sequence of discrete probabilities {f(xk)} converges to

f(x̂), we need further assumptions.

2.6 Some Assumptions

Assuming that the four-point property holds for x̂, we know that the sequence

{KL(b(x̂), f(xk))} is decreasing and that the sequence {g(y|xk)} converges to g(y|xML) =

g(y|x̂). In order to prove convergence of the EM algorithm for the discrete case, we

need to make some further assumptions.

Since the variables z lie in a discrete set, the probability functions b(xk) are

members of the unit ball of the Banach space l1 of all absolutely summable se-

quences. We assume that there is a subsequence {b(xkn)} converging to some b(x∗).

Then it follows that KL(b(x∗), f(x∗)) = KL(b(xML), f(xML)), so that the sequence

{KL(b(x∗), b(xk))} is decreasing. But a subsequence converges to zero, so that

{KL(b(x∗), b(xk))} converges to zero. We assume that this implies that {b(xk)} con-

verges to b(x∗) in l1. From

g(y|xk)b(z|y, xk) = f(z|xk),

for all z ∈ Z(y), it follows that {f(z|xk)} converges to f(z|x∗) for all z ∈ Z(y). We

then assume that this implies that {xk} converges to x∗ in some suitable topology for

X.

We consider now several examples of the use of the EM algorithm, both to illus-

trate the theory for the discrete case just discussed, and to point out what we may

need to do to remedy the situation in the continuous case.
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3 Sums of Independent Poisson Random Variables

The EM is often used with aggregated data. The case of sums of independent Poisson

random variables is particularly important.

3.1 Poisson Sums

Let Z1, ..., ZN be independent Poisson random variables with expected value E(Zn) =

λn. Let Z be the random vector with Zn as its entries, λ the vector whose entries are

the λn, and λ+ =
∑N

n=1 λn. Then the probability function for Z is

f(z|λ) =
N∏

n=1

λzn
n exp(−λn)/zn! = exp(−λ+)

N∏
n=1

λzn
n /zn! . (3.1)

Now let Y =
∑N

n=1 Zn. Then, the probability function for Y is

Prob(Y = y) = Prob(Z1 + ... + ZN = y)

=
∑

z1+...zN=y

exp(−λ+)
N∏

n=1

λzn
n /zn! . (3.2)

As we shall see shortly, we have

∑
z1+...zN=y

exp(−λ+)
N∏

n=1

λzn
n /zn! = exp(−λ+)λy

+/y! . (3.3)

Therefore, Y is a Poisson random variable with E(Y ) = λ+.

When we observe an instance of y, we can consider the conditional distribution

f(z|λ, y) of {Z1, ..., ZN}, subject to y = Z1 + ... + ZN . We have

f(z|λ, y) =
y!

z1!...zN !

( λ1

λ+

)z1

...
(λN

λ+

)zN
. (3.4)

This is a multinomial distribution.

Given y and λ, the conditional expected value of Zn is then

E(Zn|λ, y) = yλn/λ+.

To see why this is true, consider the marginal conditional distribution f(z1|λ, y) of

Z1, conditioned on y and λ, which we obtain by holding z1 fixed and summing over

the remaining variables. We have

f(z1|λ, y) =
y!

z1!(y − z1)!

( λ1

λ+

)z1
(λ′+
λ+

)y−z1 ∑
z2+...+zN=y−z1

(y − z1)!

z2!...zN !

N∏
n=2

(λn

λ′+

)zn

,
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where

λ′+ = λ+ − λ1.

As we shall show shortly,

∑
z2+...+zN=y−z1

(y − z1)!

z2!...zN !

N∏
n=2

(λn

λ′+

)zn

= 1,

so that

f(z1|λ, y) =
y!

z1!(y − z1)!

( λ1

λ+

)z1
(λ′+
λ+

)y−z1

.

The random variable Z1 is equivalent to the random number of heads showing in

y flips of a coin, with the probability of heads given by λ1/λ+. Consequently, the

conditional expected value of Z1 is yλ1/λ+, as claimed. In the next subsection we

look more closely at the multinomial distribution.

3.2 The Multinomial Distribution

When we expand the quantity (a1 + ...+aN)y, we obtain a sum of terms, each having

the form az1
1 ...azN

N , with z1 + ... + zN = y. How many terms of the same form are

there? There are N variables an. We are to use zn of the an, for each n = 1, ..., N ,

to get y = z1 + ... + zN factors. Imagine y blank spaces, each to be filled in by a

variable as we do the selection. We select z1 of these blanks and mark them a1. We

can do that in
(

y
z1

)
ways. We then select z2 of the remaining blank spaces and enter

a2 in them; we can do this in
(

y−z1

z2

)
ways. Continuing in this way, we find that we

can select the N factor types in(
y

z1

)(
y − z1

z2

)
...

(
y − (z1 + ... + zN−2)

zN−1

)
(3.5)

ways, or in

y!

z1!(y − z1)!
...

(y − (z1 + ... + zN−2))!

zN−1!(y − (z1 + ... + zN−1))!
=

y!

z1!...zN !
. (3.6)

This tells us in how many different sequences the factor variables can be selected.

Applying this, we get the multinomial theorem:

(a1 + ... + aN)y =
∑

z1+...+zN=y

y!

z1!...zN !
az1

1 ...azN
N . (3.7)

Select an = λn/λ+. Then,

1 = 1y =
( λ1

λ+

+ ... +
λN

λ+

)y
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=
∑

z1+...+zN=y

y!

z1!...zN !

( λ1

λ+

)z1

...
(λN

λ+

)zN
. (3.8)

From this we get

∑
z1+...zN=y

exp(−λ+)
N∏

n=1

λzn
n /zn! = exp(−λ+)λy

+/y! . (3.9)

3.3 Poisson Sums in Emission Tomography

The problem of complete versus incomplete data arises in single-photon computed

emission tomography (SPECT) (Wernick and Aarsvold (2004) [46]). In their 1976

paper Rockmore and Makovski [42] suggested that the problem of reconstructing a

tomographic image be viewed as statistical parameter estimation. Shepp and Vardi

(1982) [43] expanded on this idea and suggested that the EM algorithm discussed by

Dempster, Laird and Rubin (1977) [17] be used for the reconstruction. The region of

interest within the body of the patient is discretized into J pixels (or voxels), with

xj ≥ 0 the unknown amount of radionuclide within the jth pixel; we assume that

xj is also the expected number of photons emitted from the jth pixel during the

scanning time. Emitted photons are detected at any one of I detectors outside the

body, with yi > 0 the photon count at the ith detector. The probability that a photon

emitted at the jth pixel will be detected at the ith detector is Pij, which we assume

is known; the overall probability of detecting a photon emitted from the jth pixel is

sj =
∑I

i=1 Pij > 0.

3.3.1 The Complete Data

For each i and j the random variable Zij is the number of photons emitted from the

jth pixel and detected at the ith detector; the Zij are assumed to be independent

and Pijxj-Poisson. With zij a realization of Zij, the vector z with components zij is

our complete data. The pdf for this complete data is a probability vector, with

f(z|x) =
I∏

i=1

J∏
j=1

exp−Pijxj(Pijxj)
zij/zij! . (3.10)

Given an estimate xk of x and the restriction that yi =
∑J

j=1 Zij, the random

variables Zi1, ..., ZiJ have the multinomial distribution

Prob(zi1, ..., ziJ) =
yi!

zi1! · · · ziJ !

J∏
j=1

( Pijxj

(Px)i

)zij

.
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Therefore, the conditional expected value of Zij, given y and xk, is

E(Zij|y, xk) = xk
j Pij

( yi

(Pxk)i

)
,

and the conditional expected value of the random variable

log f(Z|x) =
I∑

i=1

J∑
j=1

(−Pijxj) + Zij log(Pijxj) + constants

becomes

E(log f(Z|x)|y, xk) =
I∑

i=1

J∑
j=1

(
(−Pijxj) + xk

j Pij

( yi

(Pxk)i

)
log(Pijxj)

)
,

omitting terms that do not involve the parameter vector x. In the EM algorithm, we

obtain the next estimate xk+1 by maximizing E(log f(Z|x)|y, xk).

The log likelihood function for the complete data (omitting constants) is

LLc(x) =
I∑

i=1

J∑
j=1

(
− Pijxj + zij log(Pijxj)

)
. (3.11)

Of course, we do not have the complete data.

3.3.2 The Incomplete Data

What we do have are yi, values of the random variables

Yi =
J∑

j=1

Zij. (3.12)

This is the incomplete data. These random variables are also independent and (Px)i-

Poisson, where

(Px)i =
J∑

j=1

Pijxj.

The log likelihood function for the incomplete data is

LLi(x) =
I∑

i=1

(
− (Px)i + yi log((Px)i)

)
. (3.13)

Maximizing LLc(x) in Equation (3.11) is easy, while maximizing LLi(x) in Equation

(3.13) is harder and requires an iterative method.

The EM algorithm involves two steps: in the (E) step we compute the conditional

expected value of LLc(x), conditioned on the data vector y and the current estimate
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xk of x; in the (M) step we maximize this conditional expected value to get the next

xk+1. Putting these two steps together, we have the following iteration:

xk+1
j = xk

j s
−1
j

I∑
i=1

Pij
yi

(Pxk)i

. (3.14)

For any positive starting vector x0, the sequence {xk} converges to a maximizer of

LLi(x), over all non-negative x.

Note that, because we are dealing with finite probability vectors in this example,

it is a simple matter to conclude that

g(y|x) =
∑

z∈Z(y)

f(z|x). (3.15)

This means that for this application the integral over Z(y) in Equation (1.4) is just

a finite sum. What required a bit of proof is to show that the g(y|x) obtained by

Equation (3.15) is the product of Poisson distributions.

4 Censored Exponential Data

We turn now to an example of a missing data problem that involves probability

density functions. Now the integral in Equation (1.2) requires a new interpretation

before we can make any progress.

Let Z be a random vector whose distribution is governed by the pdf f(z|x), where

x ∈ X is a (possibly vector) parameter. Given N independent realizations of Z,

denoted z1, z2, ..., zN , a maximum-likelihood (ML) estimate of the parameter x can be

obtained by maximizing the likelihood function

L(x) =
N∏

n=1

f(zn|x), (4.1)

over all x ∈ X, or, equivalently, by maximizing the log likelihood function

LL(x) = log L(x) =
N∑

n=1

log f(zn|x). (4.2)

McLachlan and Krishnan (1997) [35] give the following example. Suppose that Z is

the time until failure of a component, governed by the exponential distribution

f(z|x) =
1

x
e−z/x, (4.3)

where x > 0 is the expected time until failure. We observe a sample of N components

and record their failure times, zn. On the basis of this data, we must estimate x, the

mean time until failure.
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It may well happen, however, that during the time allotted for observing the

components, only r of the N components fail, which, for convenience, are taken to be

the first r items in the record. Rather than wait longer, we record the failure times of

those that failed, and record the elapsed time for the experiment, say T , for those that

had not yet failed; this is censored data. The censored data is viewed as incomplete,

relative to the complete data we would have had, had the trial lasted until all the

components had failed. The log likelihood function based on the complete data is

LLc(x) = −N log x− 1

x

N∑
n=1

zn, (4.4)

and the ML estimate of x is easily seen to be

xMLc =
1

N

N∑
n=1

zn. (4.5)

Since the probability that a component will survive until time T is e−T/x, the log

likelihood function for the censored, or incomplete, data is

LLi(x) = −r log x− 1

x

N∑
n=1

yn. (4.6)

In this particular example we are fortunate, in that we can maximize LLi(x) easily,

and find that the ML solution based on the censored data is

xMLi =
1

r

N∑
n=1

yn =
1

r

r∑
n=1

yn +
N − r

r
T. (4.7)

In most cases in which our data is incomplete, finding the ML estimate from the

incomplete data is difficult, while find it for the complete data is relatively easy. The

EM algorithm compensates for this difficulty by having us estimate the missing data

using the current estimate of x, and then letting us maximize the LLc(x), given that

estimated missing data, to get the next estimate of x.

In this example, both the incomplete-data vector y and the complete-data vector

z lie in RN . We have y = h(z) where the function h operates by setting to T any

component of z that exceeds T . Clearly, for a given y, the set Z(y) consists of all

vectors z with zn ≥ T or zn = yn < T . For example, suppose that N = 2, and

y = (y1, T ), where y1 < T . Then Z(y) is the one-dimensional ray

Z(y) = {z = (y1, z2)| z2 ≥ T}.

Because this set has measure zero in R2, Equation (1.2) does not make sense in this

case, but Equation (1.4) holds if we define the integral to be

g(y|x) =
∫
Z(y)

f(z|x) =
∫ ∞

T
f(y1, z2|x)dz2. (4.8)
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So, in this case, the integration is with respect to the second variable of z only.

Following McLachlan and Krishnan (1997) [35], we note that since LLc(x) is

linear in the unobserved data, to calculate E(log f(Z|x)|y, xk) we need only replace

the unobserved values with their conditional expected values, given y and xk. The

conditional distribution of zn − T , given that zn > T , is still exponential, with mean

x. Therefore, we replace the unobserved values, that is, all the yn = T , with T + xk.

Therefore, at the (E)-step we have

E(log f(Z|x)|y, xk) = −N log x− 1

x

(( N∑
n=1

yn

)
+ (N − r)xk

)
. (4.9)

The (M)-step is to maximize this quantity, with respect to x, which leads to

xk+1 =

(( N∑
n=1

yn

)
+ (N − r)xk

)
/N. (4.10)

Let x∗ be a fixed point of this iteration. Then we have

x∗ =

(( N∑
n=1

yn

)
+ (N − r)x∗

)
/N,

so that

x∗ =
1

r

N∑
n=1

yn,

which, as we have seen, is the likelihood maximizer.

5 Probabilistic Mixtures

A random variable W is said to be a mixture (see Everett and Hand (1981) [22];

Redner and Walker (1984) [41]) if its distribution is governed by the probability

density function (or probability function)

p(w|x) =
J∑

j=1

xjpj(w), (5.1)

where the pj(w) are known pfs or pdf’s and the unknown mixing proportions xj are

non-negative and sum to one. Our incomplete data are N independent realizations

of W , w1, ..., wN . As we shall see, we must deal separately with the pf and pdf cases.

To motivate such mixture problems, we imagine that each data value is generated

by first selecting one value of j, with probability xj, and then selecting a realization

of a random variable governed by pj(w). For example, there could be J bowls of
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colored marbles, and we randomly select a bowl, and then randomly select a marble

within the selected bowl. The wn are the numerical values of the colors of the selected

marbles. It is also possible to formulate the previous example of Poisson sums as a

mixture if we consider the data to be the list of detectors at which each photon was

detected. Let the incomplete data vector be y = (w1, ..., wN), with

g(y|x) =
N∏

n=1

p(wn|x).

The log likelihood function is

LLi(x) =
N∑

n=1

log(
J∑

j=1

xjpj(wn)). (5.2)

To get the ML estimate of the vector x we need to maximize LLi(x), subject to the

conditions that xj ≥ 0 and the xj sum to one.

With Pnj = pj(wn), the function LLi(x) becomes

LLi(x) =
N∑

n=1

log((Px)n). (5.3)

As we shall see later, the EM algorithm for this problem has the iterative step

xk+1
j = xk

j

N∑
n=1

Pnj
1/N

(Pxk)n

. (5.4)

We create the complete data by imagining that we could have obtained zn =

(wn, jn), for n = 1, ..., N , where the selection of wn is governed by the function fjn(w).

In the bowls example, jn is the number of the bowl from which the nth marble is

drawn. Since our objective is to estimate the xj, the values wn are irrelevant; our ML

estimate of xj is simply the proportion of times jn = j.

Given y = (w1, ..., wN), the set Z(y) now consists of those vectors z = (z1, ..., zN)

with zn = (wn, j), for some j = 1, 2, ..., J . Therefore, Z(y) is a finite set, the integral

in Equation (1.2) is zero, and the integral in Equation (1.4) is defined as just a finite

sum.

The likelihood function for the complete data vector z is

f(z|x) = f(w1, ..., wN , j1, ..., jN |x) =
N∏

n=1

xjnpjn(wn). (5.5)

We want to show that we get g(y|x) by summing f(z|x) over all z ∈ Z(y), which

means summing f(z|x) over all possible choices for the indices j1, j2, ..., jN . Let’s fix

17



the first N − 1 indices and sum over j = 1, ..., N as the values of jN . Then we have

J∑
j=1

N∏
n=1

xjnpjn(wn) =
(N−1∏

n=1

xjnpjn(wn)
)( J∑

j=1

xjpj(wN)
)

=
(N−1∏

n=1

xjnpjn(wn)
)
p(wN).

Repeating this with each factor of the product in turn, we get

∑
z∈Z(y)

f(z|x) =
N∏

n=1

p(wn) = g(y|x),

which is Equation (1.4) in this case.

The precise form of the EM algorithm will depend on whether the mixture is of

probability functions or probability density functions.

5.1 Finite Mixtures of Probability Vectors

We say that a discrete random variable W taking values in the set {i = 1, ..., I} is

a finite mixture of probability vectors if there are probability vectors fj and numbers

xj > 0, for j = 1, ..., J , such that the probability vector for W is

f(i) = Prob(W = i) =
J∑

j=1

xjfj(i). (5.6)

We require, of course, that
∑J

j=1 xj = 1.

The data are N realizations of the random variable W , denoted wn, for n =

1, ..., N and the incomplete data is the vector y = (w1, ..., wN). The column vector

x = (x1, ..., xJ)T is the parameter vector of mixture probabilities to be estimated.

The likelihood function is

L(x) =
N∏

n=1

(
x1f1(wn) + ... + xJfJ(wn)

)
,

which can be written as

L(x) =
I∏

i=1

(
x1f1(i) + ... + xJfJ(i)

)ni

,

where ni is the cardinality of the set {n| in = i}. Then the log likelihood function is

LL(x) =
I∑

i=1

ni log
(
x1f1(i) + ... + xJfJ(i)

)
.
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With u the column vector with entries ui = ni/N , and P the matrix with entries

Pij = fj(i), we see that

I∑
i=1

(Px)i =
I∑

i=1

( J∑
j=1

Pijxj

)
=

J∑
j=1

( I∑
i=1

Pij

)
=

J∑
j=1

xj = 1,

so maximizing LL(x) over non-negative vectors x with
∑J

j=1 xj = 1 is equivalent to

minimizing the KL distance KL(u, Px) over the same vectors. The restriction that

the entries of x sum to one turns out to be redundant, as we show now.

From the gradient form of the Karush-Kuhn-Tucker Theorem in optimization, we

know that, for any x̂ that is a non-negative minimizer of KL(u, Px), we have

I∑
i=1

Pij

(
1− ui

(Px̂)i

)
≥ 0,

and
I∑

i=1

Pij

(
1− ui

(Px̂)i

)
= 0,

for all j such that x̂j > 0. Consequently, we can say that

sjx̂j = x̂j

I∑
i=1

Pij

( ui

(Px̂)i

)
,

for all j. Since, in the mixture problem, we have sj =
∑I

i=1 Pij = 1 for each j, it

follows that
J∑

j=1

x̂j =
I∑

i=1

( J∑
j=1

x̂jPij

) ui

(Px̂)i

=
I∑

i=1

ui = 1.

So we know now that any non-negative minimizer of KL(u, Px) will be a probability

vector that maximizes LL(x). Since the EM algorithm in Equation (3.14) minimizes

KL(u, Px), when ui replaces yi, it can be used to find the maximum-likelihood esti-

mate of the mixture probabilities. It is helpful to remember that there was no mention

of Poisson distributions in this example, and that the EM algorithm can be used to

find likelihood maximizers in situations other than that of sums of independent Pois-

son random variables.

If the set of values that W can take on is infinite, say {i = 1, 2, ...}, then the fj

are infinite probability sequences. The same analysis applies to this infinite case, and

again we have sj = 1. The iterative scheme is given by Equation (3.14), but with an

apparently infinite summation; since only finitely many of the ui are non-zero, the

summation is actually only finite.
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5.2 Finite Mixtures of Probability Density Functions

For finite mixtures of probability density functions the problem is a bit more com-

plicated. A variant of the EM algorithm still solves the problem, but this is not so

obvious.

Suppose now that W is a random variable with probability density function f(w)

given by

f(w) =
J∑

j=1

xjfj(w), (5.7)

where the fj(w) are known pdf’s and the mixing proportions xj are unknown. Our

data is w1, ..., wN , that is, N independent realizations of the random variable W , and

y = (w1, ..., wN) is the incomplete data. With x the column vector with entries xj,

we have the likelihood function

L(x) =
N∏

n=1

(
J∑

j=1

xjfj(wn)),

and the log likelihood function

LL(x) =
N∑

n=1

log(
J∑

j=1

xjfj(wn)).

We want to estimate the vector x by maximizing LL(x), subject to xj ≥ 0 and

x+ =
∑J

j=1 xj = 1.

Let Pnj = fj(zn), and sj =
∑N

n=1 Pnj. Then

LL(x) =
N∑

n=1

log(Px)n.

With un = 1
N

for each n, we have that maximizing LL(x), subject to xj ≥ 0 and

x+ = 1, is equivalent to minimizing

KL(u, Px)−
N∑

n=1

(Px)n, (5.8)

subject to the same constraints. Since the non-negative minimizer of the function

F (x) = KL(u, Px) +
J∑

j=1

(1− sj)xj (5.9)

satisfies x+ = 1, it follows that minimizing F (x) subject to xj ≥ 0 and x+ = 1 is

equivalent to minimizing F (x), subject only to xj ≥ 0.

The following theorem is found in Byrne (2001) [7]:
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Theorem 5.1 Let y be any positive vector and

G(x) = KL(y, Px) +
J∑

j=1

βjKL(γj, xj).

If sj +βj > 0, αj = sj(sj +βj)
−1, and βjγj ≥ 0 for each j, then the iterative sequence

generated by

xk+1
j = αjs

−1
j xk

j

( N∑
n=1

Pnj
yn

(Pxk)n

)
+ (1− αj)γj

converges to a non-negative minimizer of G(x).

With yn = un = 1
N

, γj = 0, and βj = 1 − sj, it follows that the iterative sequence

generated by

xk+1
j = xk

j

1

N

N∑
n=1

Pnj
1

(Pxk)n

(5.10)

converges to the maximum-likelihood estimate of the mixing proportions xj. This is

the EM iteration presented in McLachlan and Krishnan, Equations (1.36) and (1.37)

[35].

6 The Continuous Case

If we were to accept Equation (1.2), we could mimic the analysis for the discrete case

and show that each step of the EM algorithm increases the likelihood. Because the

Equation (1.2) may not make sense for our problem, however, we cannot write the

conditional pdf for Z, given Y = y, as

b(z|y, x) = f(z|x)/g(y|x);

the problem lies with the set of z over which b(z|y, x) is to be defined. If we define it

only for z ∈ Z(y), then either its integral is not one, or Equation (1.2) holds. If we

define b(z|y, x) for all z, then g(y|x) = 1, which need not be the case.

In the case of censored exponential data, we found that we must reinterpret the

integral in Equation (1.2) to be integration over the product of N−r half-lines, where

r itself depends on the observed y. In the probabilistic mixture case, the missing data

is discrete, so the integral is just a sum.

It is conventional wisdom that an EM algorithm must increase likelihood at each

step. However, this property depends heavily on our resolving the issue posed by

Equation (1.2).
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6.1 Proving Monotonicity of the EM

To examine more closely how the problem of Equation (1.2) affects the development of

the theory, we look at the standard way in which it is proved that the EM increases

likelihood at each step. The proof we present here is taken from McLachlan and

Krishnan (1997) [35], but is essentially the proof from Dempster et al. (1977) [17].

Their notation has been changed to conform to that of this note.

Let the incomplete and complete likelihood functions now be denoted Li(x) and

Lc(x), respectively. Their proof begins with the definition of the conditional density

of Z, given Y = y and x:

b(z|y, x) = f(z|x)/g(y|x). (6.1)

For b(z|y, x) to be a pdf, we need its integral with respect to z, however that is defined,

to be one. Since
∫

f(z|x)dz = 1 already, it must be assumed, if it is not explicitly

stated, that Equation (6.1) holds only for z ∈ Z(y). Consequently, we must have

g(y|x) =
∫
Z(y)

f(z|x), (6.2)

which, as we have seen, brings us to the issue of how to define the integral over Z(y).

The proof then uses Equation (6.1) to get

log Li(x) = log g(y|x) = log f(z|x)− log b(z|y, x), (6.3)

which, of course, holds only for z ∈ Z(y). McLachlan and Krishnan rewrite Equation

(6.3) as

log Li(x) = log Lc(x)− log b(z|y, x),

but this can be misleading, since

log Lc(x) = log f(z|x)

is used in Equation (6.3) only for those z ∈ Z(y).

They then take the expectation of both sides of Equation (6.3), conditioned on y

and xk, treating z as a random vector Z now, obtaining

log Li(x) = log g(y|x) = Q(x, xk)−H(x, xk), (6.4)

where

Q(x, xk) = Exk

(
log f(Z|x)|y

)
, (6.5)
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and

H(x, xk) = Exk

(
log b(Z|y, x)|y

)
. (6.6)

Replacing x with xk+1 and then with xk in Equation (6.4), we get

log Li(x
k+1)− log Li(x

k) =

(
Q(xk+1, xk)−Q(xk, xk)

)
−
(
H(xk+1, xk)−H(xk, xk)

)
. (6.7)

Because xk+1 is chosen to maximize Q(x, xk), we know that

Q(xk+1, xk)−Q(xk, xk) ≥ 0.

Therefore, the monotonicity of Li(x
k) will hold if we can show that

H(xk+1, xk)−H(xk, xk) ≤ 0.

For any x we have

H(x, xk)−H(xk, xk) = Exk

(
log(b(Z|y, x)/b(Z|y, xk))|y

)
=
∫
Z(y)

b(z|y, xk) log(b(z|y, x)/b(z|y, xk)).

Since the integral over Z(y) has been defined to guarantee that Equation (6.2) holds

and that b(z|y, x) is a pdf over Z(y) for each x, we know from Jensen’s Inequality for

pdf’s that ∫
Z(y)

b(z|y, xk) log(b(z|y, x)/b(z|y, xk)) ≤ 0,

so the proof is complete.

The important point here is that this proof that the EM algorithm increases

likelihood at each step rests heavily on having resolved the issue of the integral in

Equation (1.2) in such a way as to make the b(z|y, x) pdf’s over the set Z(y). Knowing

that they are pdf’s, we can substitute for Jensen’s Inequality and write∫
Z(y)

b(z|y, xk) log(b(z|y, x)/b(z|y, xk)) = −KL(b(z|y, xk), b(z|y, x)) ≤ 0.
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6.2 The Generalized Deconvolution Problem

Eggermont and LaRiccia (2009) [20] consider the generalized deconvolution problem

g(y|x) =
∫

k(y, z)f(z|x)dz, (6.8)

where k(y, z) is a measurable kernel defined on a subset of RN ×RM having positive

measure. We can put Equation (1.2) in this form if we take

k(y, z) = χZ(y)(z),

and require that Z(y) have positive measure for each y. Then the conditional den-

sity of Y , conditioned on Z, is k(y, Z), and we have the conditional density of Z,

conditioned on Y , is

b(z|y, x) = k(y, z)f(z|x)/g(y|x). (6.9)

Now we can mimic the analysis of the discrete case.

6.3 Another Approach

We suppose that M > N and that there is a second function k : RM → RM−N such

that the function G : RM → RM given by

G(z) = (h(z), k(z)) = (y, w) = u

is invertible, with inverse H and determinant of the Jacobian matrix denoted by

J(y, w). For any measurable set A in RN we have∫
A

g(y|x)dy =
∫

y∈A

∫
w∈W(y)

f(H(y, w)|x)J(y, w)dw,

where

W(y) = {w|w = k(z), y = h(z)}.

It then follows that

g(y|x) =
∫

w∈W(y)
f(H(y, w)|x)J(y, w)dw,

so that, for z ∈ Z(y),

b(z|y, x) = b(H(y, k(z))|y, x) = f(H(y, k(z))|x)J(y, k(z))/g(y|x)

defines a probability density function on Z(y).
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For example, suppose that Z = (Z1, Z2), where Z1 and Z2 are independent and

uniformly distributed on the interval [0, x]. Suppose that Y = Z1 + Z2. The set Z(y)

is the set of all points (z1, z2) for which h(z1, z2) = z1 +z2 = y, which is a set of planar

measure zero. The function g(y|x) is

g(y|x) =


y/x2, 0 ≤ y ≤ x;

(2x− y)/x2, x ≤ y ≤ 2x.
(6.10)

Equation (1.2) does not hold here. How might the correct equation read?

In our example, we have M = 2 and N = 1. Let k(z1, z2) = z1 − z2. Then

G(z1, z2) = (z1 + z2, z1 − z2),

H(y, w) = (
y + w

2
,
y − w

2
),

and

J(y, w) = 1/2.

The set W(y) is the entire real line.

The pdf for Z is

f(z1, z2) =
1

x2
χ[0,1](z1)χ[0,1](z2)

so the pdf for the random variable Y is

g(y) =
1

2

∫
R

f(H(y, w))dw =
1

2x2

∫
R

χ[0,1](
y + w

2
)χ[0,1](

y − w

2
)dw.

This is easily seen to be y
x2 , for 0 ≤ y ≤ x and 2x−y

x2 , for 1 ≤ y ≤ 2x, which is the pdf

in Equation (6.10).

6.4 Yet Another Approach

In this example, with Z = (Z1, Z2), the pdf f(z|x) is easy to calculate, but obtaining

g(y|x) from f(z|x) using h is more complicated. We could have adopt a somewhat

different approach.

We could say that the complete data random vector Z has the form Z = (Y,W ),

where Y and W are possibly dependent random variables. The incomplete data is Y

and the function h is simply the projection of Z onto its first component.

In our example, the complete data can be taken to be Z = (Y,W ) = (Z1+Z2, Z1−
Z2), so that h(Z) is simply the projection onto the first component. What is more

complicated now is defining f(z|x).

This example also provides an interesting counter-example concerning conver-

gence.
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6.5 A Counter-Example

Suppose we have an initial estimate x0 of the parameter x. Since y = z1 +z2, it makes

no sense to select a value of x0 less than y/2; therefore, let us assume that x0 ≥ y/2.

The (E) step is to calculate the conditional expected value of

LLc(x) = log χ[0,x](Z1) + log χ[0,x](Z2)− 2 log x, (6.11)

conditioned on x0 and y. For any x in the interval [y/2, x0), there will be a positive

conditional probability that one or both of Z1 or Z2 will exceed x, so, in order for the

conditional expected value to be finite, we must restrict x to the closed ray [x0, +∞).

The conditional expected value of LLc(x) is then −2 log x. The maximum of −2 log x

over the ray [x0, +∞) occurs at x = x0, so x1 = x0. Therefore, beginning with

x0 ≥ y/2, we have xk = x0 for all k = 1, 2, ..., and so {xk} does not converge to xML,

generally, and {g(y|xk)} does not converge to g(y|xML).

7 Historical Background

Although the Dempster, Laird and Rubin (1977) paper [17] is often cited as a funda-

mental work on the EM algorithm, its authors state clearly that this algorithm has a

long history. We shall make no attempt here to recapitulate that history, but rather

refer the reader to the book by McLachlan and Krishnan (1997) [35] and the biblio-

graphical survey by Meng and Pedlow (1992) [37]. The article by Meng and van Dyk

(1997) [38] is also a good source for the history of the EM algorithm. The editorial

by Leahy and Byrne (2000) [34] provides a brief summary of the state-of-the-art in

medical imaging at that time.

The EM algorithm has become a popular tool in many areas of applications. It

was introduced into the medical tomography literature by Shepp and Vardi (1982)

[43], with subsequent elaboration by Lange and Carson (1984) [32], Vardi, Shepp and

Kaufman (1985) [45], Lange, Bahn and Little (1987) [33], and many others. These

papers describe the physics of the transmission and emission tomographic problems,

set up the complete data models to be used in the EM algorithm, provide proofs

of convergence, sometimes with gaps, and suggest regularization methods to reduce

sensitivity to noise in the data.
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8 Mathematical Modeling and Applications

The problems of reconstructing an image from single-photon computed emission to-

mography (SPECT) data and of estimating the mixing proportions for finite mixtures

provide insight into the workings of the EM algorithm in important applications.

8.1 The EM Algorithm for the Poisson Model

The underlying model for the SPECT problem is that of sums of independent Poisson

random variables. For i = 1, ..., I and j = 1, ..., J , the complete data random variables

Zij are independent Poisson, with mean values

E(Zij) = Pijxj,

where 0 ≤ Pij ≤ 1, and xj ≥ 0. The parameter vector is x = (x1, ..., xJ)T . The

probability function for the random vector

Z = {Zij|i = 1, ..., I, j = 1, ..., J},

given x, is

f(z|x) =
I∏

i=1

J∏
j=1

exp(−Pijxj)(Pijxj)
zij/zij!.

Because of the independence, we can write

f(z|x) =
I∏

1=1

J∏
j=1

fij(zij|x),

where

fij(zij|x) = exp(−Pijxj)(Pijxj)
zij/zij!.

The incomplete data random variables are

Yi =
J∑

j=1

Zij.

The Yi are also independent and Poisson, with mean values

E(Yi) = (Px)i =
J∑

j=1

Pijxj.

The objective is to estimate x, given one instance y = (y1, ..., yI)
T of the random

vector Y .
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Given an estimate xk of x and the restriction that yi =
∑J

j=1 Zij, the random

variables Zi1, ..., ZiJ have the multinomial distribution

Prob(zi1, ..., ziJ) =
yi!

zi1! · · · ziJ !

J∏
j=1

( Pijxj

(Px)i

)zij

.

Therefore, the conditional expected value of Zij, given y and xk, is

E(Zij|y, xk) = xk
j Pij

( yi

(Pxk)i

)
,

and the conditional expected value of the random variable

log f(Z|x) =
I∑

i=1

J∑
j=1

(−Pijxj) + Zij log(Pijxj) + constants

becomes

E(log f(Z|x)|y, xk) =
I∑

i=1

J∑
j=1

(
(−Pijxj) + xk

j Pij

( yi

(Pxk)i

)
log(Pijxj)

)
,

omitting terms that do not involve the parameter vector x. In the EM algorithm, we

obtain the next estimate xk+1 by maximizing E(log f(Z|x)|y, xk). As is the case with

the general EM algorithm, the Kullback-Leibler distance plays an important role.

Maximizing E(log f(Z|x)|y, xk) is equivalent to minimizing KL(r(xk), q(x)), where

r(x) and q(x) are I by J arrays with entries

r(x)ij = xjPij

( yi

(Px)i

)
,

and

q(x)ij = xjPij.

The iterative step of the EM algorithm is given in Equation (3.14).

Any likelihood maximizer xML is also a non-negative minimizer of the KL distance

KL(y, Px), so the EM algorithm can be thought of as a method for finding a non-

negative solution (or approximate solution) for a system y = Px of linear equations

in which yi > 0 and Pij ≥ 0 for all indices.

9 Regularization

In most applications the measured data is noisy. Algorithms such as the EM algorithm

that work well in theory, on noise-free data, may work poorly on actual noisy data,

necessitating the use of regularization.
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9.1 The Need for Regularization

Maximizing the likelihood function g(y|x) sounds like a good idea, but there are

circumstances in which the resulting estimator xML is not useful. One particular case

is in medical image reconstruction, for example, in SPECT, where the parameter

vector x represents the vectorization of the two-dimensional array of pixel intensities

that comprises the desired image. The following theorem describes the problem. As

previously, we assume that the vector y has positive entries and the matrix P has

non-negative entries. If the matrix P and every matrix obtained from P by deleting

columns have full rank, we say that P has the full-rank property.

Theorem 9.1 ([5]) Let P have the full-rank property. If the system y = Px has

no non-negative solution, then there is a subset S of {j = 1, ..., J}, with cardinality

at most I − 1, such that any non-negative minimizer of the function KL(y, Px) is

supported on S, and so there is a unique non-negative minimizer of KL(y, Px).

In fact, this result is not limited to KL distances and non-negative systems, nor is

it a property of the EM algorithm; it holds more generally, as the following theorem

shows.

Theorem 9.2 ([12]) Let A be an arbitrary I by J matrix. If A and every matrix

obtained from A by deleting columns has full rank, and if the system Ax = b has

no non-negative solutions, then there is a subset S of {j = 1, ..., J}, with cardinality

at most I − 1, such that any non-negative minimizer of the function ‖Ax − b‖2 is

supported on S, and so there is a unique non-negative minimizer of ‖Ax− b‖2.

Whether we are minimizing KL(y, Px) or ‖Ax−b‖ over non-negative x, we are trying

to fit the model Px or Ax to the measured data, y or b. When the data are noisy,

we are often over-fitting noisy data to the model, resulting in noisy answers. The

theorems above make this precise. Another way to think about the problem is this:

for non-negative x the vectors of the form Px or Ax constitute a cone. When the

data vector falls outside this cone, the point in the cone that is closest will lie on a

face of the cone, and so will be a convex combination of a small number of the vectors

that generated the cone. Therefore, most of the coefficients will be zero.

In the case of SPECT the larger the number of pixels J , the smaller the pixels,

so it is natural to assume that a larger J means greater resolution. However, as

Theorem 9.1 shows, when y is noisy, which is the typical case, increasing the number

of pixels can lead to a maximum-likelihood image in which many of the pixels have
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the value zero. These tend to be scattered throughout the image, creating a picture

that resembles stars in the night sky. One way to remedy this is simply to stop the

iterative procedure early. There are other ways, as we shall see shortly.

9.2 Penalized EM

The iterative step of the EM algorithm requires us to minimize the function KL(r(xk), q(x))

over x ≥ 0 to get xk+1. A regularized version of the EM algorithm requires us to

minimize

KL(r(xk), q(x)) +
J∑

j=1

wjKL(pj, xj),

where wj > 0 are weights and the vector p with entries pj > 0 is a prior estimate of

the desired x (Byrne 1993) [5]. The resulting iterative step is

xk+1
j =

wj

wj + sj

pj +
1

wj + sj

xk
j

I∑
i=1

Pij

( yi

(Pxk)i

)
.

This regularization algorithm is equivalent to the Bayesian maximum a posteriori

method with a prior gamma distribution of Lange, Bahn and Little (1987) [33]. The

sequence {xk} converges to the non-negative minimizer of the function

KL(y, Px) +
J∑

j=1

wjKL(pj, xj).

9.3 Other Regularization Methods

As we have already seen, regularization can be achieved through the use of penalty

functions. If one has prior knowledge about the solution x being sought, such as that

it is the vectorization of a locally smooth image, then one can use a penalty function

that penalizes images that are not locally smooth. This is usually done with what is

called a Gibbs prior in Geman and Geman (1984) [24]. There is a difficulty with the

use of general penalty functions, however.

Suppose that we wish to regularize the EM algorithm to find the penalized maximum-

likelihood solution that minimizes the function

KL(y, Px) + g(x).

It is natural to set up an iterative algorithm in which, at the kth step, we minimize

KL(r(xk), q(x)) + g(x).
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When we take the gradient with respect to the vector variable x, we find that we

cannot obtain a closed-form expression for the next xk+1; the problem is that the

equation to be solved contains the gradient of g(x), evaluated at xk+1. The one-step-

late approach of Green (1990) [25] partially resolves this difficulty by evaluating this

gradient at xk instead.

9.4 De Pierro’s Surrogate-Function Method

De Pierro (1995) [18] presents a modified EM algorithm that includes regularization

in the form of a penalty function. His objective is to embed the penalty term in the

alternating minimization framework in such a way as to make it possible to obtain

the next iterate in closed form. Because his surrogate function method has been used

subsequently by Fessler et al. (Fessler et al. (1997) [23], Ahn et al. (2006) [1]) and

others to obtain penalized likelihood algorithms, we consider his approach in some

detail.

Let x and z be vector variables and H(x, z) > 0. Mimicking what occurs in

penalized EM when the gamma prior distribution is used, we require that if we fix

z and minimize H(x, z) with respect to x, the solution should be x = z, the vector

we fixed; that is, H(x, z) ≥ H(z, z) always. If we fix x and minimize H(x, z) with

respect to z, we should get something new; call it Tx. As with the EM, the algorithm

will have the iterative step xk+1 = Txk.

Summarizing, we see that we need a function H(x, z) with the properties (1)

H(x, z) ≥ H(z, z) for all x and z; (2) H(x, x) is the function F (x) we wish to minimize;

and (3) minimizing H(x, z) with respect to z for fixed x is easy.

The function to be minimized is

F (x) = KL(y, Px) + g(x), (9.12)

where g(x) ≥ 0 is some penalty function. De Pierro uses penalty functions g(x) of

the form

g(x) =
p∑

l=1

fl(〈sl, x〉 ). (9.13)

Let us define the matrix S to have for its lth row the vector sT
l . Then 〈sl, x〉 = (Sx)l,

the lth entry of the vector Sx. Therefore,

g(x) =
p∑

l=1

fl((Sx)l). (9.14)

Let λlj > 0 with
∑J

j=1 λlj = 1, for each l.
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Assume that the functions fl are convex. Therefore, for each l, we have

fl((Sx)l) = fl(
J∑

j=1

Sljxj) = fl(
J∑

j=1

λlj(Slj/λlj)xj) (9.15)

≤
J∑

j=1

λljfl((Slj/λlj)xj). (9.16)

Therefore,

g(x) ≤
p∑

l=1

J∑
j=1

λljfl((Slj/λlj)xj). (9.17)

So we have replaced g(x) with a related function in which the xj occur separately,

rather than just in the combinations (Sx)l. But we aren’t quite done yet.

We would like to take for De Pierro’s H(x, z) the function KL(r(xk), q(x)) used

in the EM algorithm, plus the function

p∑
l=1

J∑
j=1

λljfl((Slj/λlj)zj). (9.18)

But there is one slight problem: we need H(z, z) = F (z), which we don’t have yet.

De Pierro’s clever trick is to replace fl((Slj/λlj)zj) with

fl

(
(Slj/λlj)zj − (Slj/λlj)xj

)
+ fl((Sx)l). (9.19)

So, De Pierro’s function H(x, z) is the sum of the H(x, z) used in the EM case and

the function

p∑
l=1

J∑
j=1

λljfl

(
(Slj/λlj)zj − (Slj/λlj)xj

)
+ fl((Sx)l). (9.20)

Now he has the three properties he needs. Once he has computed xk, he minimizes

H(xk, z) by taking the gradient and solving the equations for the correct z = Txk =

xk+1. For the choices of fl he discusses, these intermediate calculations can either be

done in closed form (the quadratic case) or with a simple Newton-Raphson iteration

(the logcosh case).

10 Accelerating the EM Algorithm

It is well known that the EM algorithm can be slow to convergence. For that reason,

there is great interest in finding methods to accelerate the EM algorithm. We focus
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here on block-iterative methods, in which some, but not necessarily all the data is

used at each step.

The paper of Holte, Schmidlin, et al. (1990) [28] compares the performance of

Schmidlin’s method of (1972) [44] with the EM algorithm. Almost as an aside, they

notice the accelerating effect of what they call projection interleaving, that is, the use

of blocks. This paper contains no explicit formulas, however, and presents no theory,

so one can only make educated guesses as to the actual iterative methods employed.

Somewhat later, it was noticed that useful images could be obtained quickly if, in the

implementation of the EM algorithm, the summation was performed only over those

i in a subset, or block, of the detector indices; then a new block was selected and the

process repeated. This ordered-subset (OSEM) method of Hudson and Larkin (1994)

[29] quickly became the algorithm of choice, at first, for researchers, and a bit later,

for the clinic.

The absence of a solid mathematical foundation for the OSEM led several groups

to reexamine other block-iterative methods, particularly BI-MART, the block-iterative

version of the multiplicative algebraic reconstruction technique (Censor and Segman

(1987) [15]). Unlike the OSEM, the BI-MART always converges to a non-negative

solution of the system y = Px, whenever there is a non-negative solution, regardless

of how the blocks are selected. This suggested that the OSEM is not the correct

block-iterative version of the EM. This problem was resolved with the appearance,

in Browne and DePierro (1996) [4], of the RAMLA and, in Byrne (1996) [6], of the

rescaled BI-EM (RBI-EM) method.

Block-iterative methods do not necessarily converge faster than simultaneous ones

that use all the equations at each step. The block-iterative methods do provide the

opportunity for a rescaling of the equations, which, as we shall see, does lead to

significant acceleration of the algorithms.

Throughout this section, we assume that the set {i = 1, ..., I} is the (not neces-

sarily disjoint) union of subsets, or blocks, denoted Bn, for n = 0, 1, ..., N − 1.

We let Pn be the matrix and yn the vector obtained from P and y, respectively,

by removing all the rows except for those whose index i is in the set Bn. For each n

and j, we let

snj =
∑

i∈Bn

Pij,

mn = max{snj, j = 1, ..., J},

and

µn = max{snjs
−1
j , j = 1, ..., J}.
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When N = 1, snj = sj, so µ = µn = 1 and

m = mn = max{sj, j = 1, ..., J}.

When N = I, and n = i, snj = Pij, so

µi = µn = max{Pijs
−1
j , j = 1, ..., J},

and

mi = mn = max{Pij, j = 1, ..., J}.

We say that the system Px = y is consistent if it has solutions x whose entries are

all non-negative. The norm ||x|| is the Euclidean norm.

10.1 The Block-Iterative EM Algorithm

For k = 1, 2, ..., let n = k(mod N). The block-iterative EM (BI-EM) has the iterative

step

xk
j = (1− γnδjsnj)x

k−1
j + xk−1

j γnδj

∑
i∈Bn

Pij
yi

(Pxk−1)i

, (10.21)

with γ > 0 chosen so that

snjδjγn ≤ 1.

The rescaled BI-EM (RBI-EM) uses the largest values of γn consistent with these

constraints.

The analogue of the MART is the EMART, with the iterative step

xk
j = (1− γiδjPij)x

k−1
j + xk−1

j γiδjPij
yi

(Pxk−1)i

, (10.22)

with Pijδjγi ≤ 1 and i = k(mod I). We have the following result concerning the

BI-EM.

Theorem 10.1 When the system y = Px is consistent, the BI-EM sequence {xk}
converges to a non-negative solution of y = Px, for any choice of blocks and any

x0 > 0.

The inequality in the following lemma is the basis for the convergence proof.

Lemma 10.1 Let y = Px for some nonnegative x. Then for {xk} as in Equation

(10.21) we have

J∑
j=1

δ−1
j KL(xj, x

k−1
j )−

J∑
j=1

δ−1
j KL(xj, x

k
j ) ≥ (10.23)

γn

∑
i∈Bn

KL(yi, (Pxk)i). (10.24)

34



Proof: From the iterative step

xk
j = xk−1

j (1− δjγnσnj) + xk
j δjγn

∑
i∈Bn

Pij
yi

(Pxk)i

(10.25)

we have

log(xk
j /x

k−1
j ) = log

(
(1− δjγnσnj) + δjγn

∑
i∈Bn

Pij
yi

(Pxk)i

)
. (10.26)

By the concavity of the logarithm we obtain the inequality

log(xk
j /x

k−1
j ) ≥

(
(1− δjγnσnj) log 1 + δjγn

∑
i∈Bn

Pij log
yi

(Pxk)i

)
,

(10.27)

or

log(xk
j /x

k−1
j ) ≥ δjγn

∑
i∈Bn

Pij log
yi

(Pxk)i

. (10.28)

Therefore

J∑
j=1

δ−1
j xj log(xk+1

j /xk
j ) ≥ γn

∑
i∈Bn

(
J∑

j=1

xjPij) log
yi

(Pxk)i

. (10.29)

Also

J∑
j=1

δ−1
j (xk

j − xk−1
j ) = γn

∑
i∈Bn

((Pxk)i − yi). (10.30)

This concludes the proof of the lemma.

From the inequality in (10.24) we can conclude several things:

• the sequence {∑J
j=1 δ−1

j KL(xj, x
k
j )} is decreasing;

• the sequence {xk} is therefore bounded; and

• the sequence {∑i∈Bn
KL(yi, (PxmN+n−1)i)} is converging to zero.

Let x∗ be any cluster point of the sequence {x}. Then it is not difficult to show that

y = Px∗. Replacing x with x∗ we have that the sequence {∑J
j=1 δ−1

j KL(x∗j , x
k
j )} is

decreasing; since a subsequence converges to zero, so does the whole sequence. There-

fore x∗ is the limit of the sequence {xk}. This proves that the algorithm produces a

nonnegative solution of y = Px. We have been unable, so far, to replace the inequal-

ity in (10.24) with an equation in which the right side is independent of the particular

solution x chosen. Therefore, in contrast with the BI-MART, we do not know which
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solution the BI-EM gives us, how the solution depends on the starting vector x0, nor

how the solution may depend on the choice of blocks.

The behavior of BI-EM illustrates once again that using block-iterative methods

does not, by itself, lead to faster convergence. It seems that the main advantage of

the use of these block-iterative methods is the opportunity to select the parameters.

As with BI-MART, the key to accelerating the convergence of BI-EM is the proper

choice of the parameters γn and δj. Recall that we must have

γnδjsnj ≤ 1,

for all n and j. When we select δj = s−1
j , we must then have γn ≤ µ−1

n . When we

have δj = 1, we need γn ≤ m−1
n . Generally speaking, the larger the γn the faster the

convergence. The rescaled BI-EM (RBI-EM) uses the largest acceptable value of the

γn.

In Meidunas (2001) [36] the RBI-EM was used to obtain sub-pixel resolution for

satellite imaging.

10.2 The RAMLA

We must mention a method that closely resembles the EMART, the row-action max-

imum likelihood algorithm (RAMLA) [4], which was discovered independently by

Browne and De Pierro (1996). The RAMLA avoids the limit cycle in the inconsistent

case by using strong underrelaxation involving a decreasing sequence of relaxation

parameters λk. The RAMLA is the following:

Algorithm 10.1 (RAMLA) Let x0 be an arbitrary positive vector, and n = k(mod N).

Let the positive relaxation parameters λk converge to zero, with
∑+∞

k=0 λk = +∞. Then,

xk
j = (1− λksnj)x

k−1
j + λkx

k−1
j

∑
i∈Bn

Pij

( yi

(Pxk−1)i

)
. (10.31)

11 The Paradigm of Alternating Minimization

When we formulate the problem in terms of minimizing the KL distance KL(b(xk), f(x))

at each step, we are employing what might be called the alternating minimization

paradigm of Csiszár and Tusnády (1984) [16]. Since KL(b(x), f(x)) = − log g(y|x),

we have

− log g(y|xk) = KL(b(xk), f(xk)) ≥ KL(b(xk), f(xk+1))

≥ KL(b(xk+1), f(xk+1)) = − log g(y|xk+1),

36



so the likelihood function g(y|xk) is increasing.

The basic idea is to consider the two sets B(X) = {b(x)|x ∈ X} and F (X) =

{f(x)|x ∈ X} and to find a pair {b, f} where b is the member of B(X) closest to

F (X), and f is the member of F (X) closest to B(X), where “closest” is yet to be

defined. The sets and distance measure are defined in such a way that the optimal

pair provides a solution to the original problem. Once a “distance” d(b, f) is defined

for b ∈ B(X) and f ∈ F (X), the kth step of the alternating minimization algorithm

first has us minimize d(b, fk) to get bk and then minimize d(bk, f) to get fk+1. In

order to mimic the case of the KL distance, we want d(b(x), f(x)) to be the objective

function to be minimized, and

d(b(x), f(xk)) ≥ d(b(xk), f(xk)),

for all x and all k.

12 More on Convergence

There is a mistake in the proof of convergence given in Dempster, Laird, and Rubin

(1977) [17]. Wu (1983) [47] and Boyles (1983) [3] attempted to repair the error, but

also gave examples in which the EM algorithm failed to converge to a global maximizer

of likelihood. In Chapter 3 of McLachlan and Krishnan (1997) [35] we find the basic

theory of the EM algorithm, including available results on convergence and the rate

of convergence. Because many authors rely on Equation (1.2), it is not clear that

these results are valid in the generality in which they are presented. There appears

to be no single convergence theorem that is relied on universally; each application

seems to require its own proof of convergence. When the use of the EM algorithm was

suggested for SPECT and PET, it was necessary to prove convergence of the resulting

iterative algorithm in Equation (3.14), as was eventually achieved in a sequence of

papers (Shepp and Vardi (1982) [43], Lange and Carson (1984) [32], Vardi, Shepp

and Kaufman (1985) [45], Lange, Bahn and Little (1987) [33], and Byrne (1993) [5]).

When the EM algorithm was applied to list-mode data in SPECT and PET (Barrett,

White, and Parra (1997) [2], and Huesman et al. (2000) [30], the resulting algorithm

differed slightly from that in Equation (3.14) and a proof of convergence was provided

in Byrne (2001) [7]. The convergence theorem in Byrne (2001) also establishes the

convergence of the iteration in Equation (5.10) to the maximum-likelihood estimate of

the mixing proportions, for the case of finite mixtures of probability density functions.

To illustrate a possible problem, we return to the example of Y = Z1 + Z2, the

sum of two independent random variables uniformly distributed on [0, x]. Maximizing
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g(y|x) given by Equation (6.10), we find that the maximum-likelihood estimate of x,

given the incomplete data, is xML = y. Now let us consider the EM algorithm for

this case.

Suppose we have a current estimate xk of the parameter x. The (E) step is to

calculate the conditional expected value of

LLc(x) = log χ[0,x](Z1) + log χ[0,x](Z2)− 2 log x. (12.32)

If xk > x, then with positive probability Z1 and Z2 may exceed x, and the value of

LLc(x) would be −∞. Therefore, the conditional expected value of LLc(x) is finite,

and equals −2 log x, if and only if x ≥ xk. From our knowledge of y, we infer that

x ≥ y/2 also. The maximum of −2 log x then occurs when x = xk+1 is the maximum

of xk and y/2. The sequence {xk} does not converge to xML = y.

13 Open Questions

As we have seen, even the basic formulation of the EM algorithm presents difficulties

when probability density functions are involved. We have suggested several ways to

avoid the difficulties, but other ways may also be useful.

Proving convergence of the sequence {xk} appears to involve the selection of an

appropriate topology for the parameter space X. While it is common to assume that

X is a subset of Euclidean space and that the usual norm should be used to define

distance, it may be helpful to tailor the metric to the nature of the parameters. In

the case of Poisson sums, for example, the parameters are non-negative vectors and

we found that the cross-entropy distance is more appropriate. Even so, a number

of additional assumptions appear necessary before convergence of the {xk} can be

established. To simplify the analysis, it is often assumed that cluster points of the

sequence lie in the interior of the set X, which is not a realistic assumption in some

applications.

It may be wise to consider, instead, convergence of the functions f(z|xk), or maybe

even to identify the parameters x with the functions f(z|x). Proving convergence of

the likelihood values L(xk) is also an option.

Accelerating convergence is an important area of research. The use of block-

iterative methods has shown some promise, but the issue of subsequential convergence

to a limit cycle, rather than to a single likelihood maximizer, is still a concern.

Regularization appears to be important in many applications, but when penalty

functions are included the M step of the algorithm can no longer be performed without
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iteration or some other approximate method. Efficient regularization methods are still

needed.

14 Conclusion

As I hope the reader is now convinced, the EM algorithm is still a work in progress

and there are many gaps in the theory to be filled in. Because it is not really an

algorithm, but a template for the design of algorithms, each particular application

will generate its own difficulties. Because there is no general convergence theory that

applies to all cases, each application will require its own convergence theory.
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