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ITERATIVE RECONSTRUCTION ALGORITHMS BASED
ON CROSS-ENTROPY MINIMIZATION

CHARLES BYRNE*

Abstract. The“expectation maximization maximum likelihood” algorithm (EMML)
has received considerable attention in the literature since its introduction in 1982 by
Shepp and Vardi. A less well known algorithm, discovered independently in 1972 by
Schmidlin (“iterative separation of sections™) and by Darroch and Ratcliff {“general-
ized iterative scaling”), and rediscovered and called the “simultaneous multiplicative
algebraic reconstruction technique” (SMART) in 1992, is quite similar to the EMML.
Both algorithms can be derived within a framework of alternating minimization of
cross-entropy distances between convex sets. By considering such a parallel develop-
ment of EMML and SMART we discover that certain questions answered for SMART
remain open for EMML. We also demonstrate the importance of cross-entropy (or
Kullback-Leibler) distances in understanding these algorithms, as well as the usefulness
of Pythagorean-like orthogonality conditions in the proofs of the results. The SMART
is closely related to the “multiplicative algebraic reconstruction technique” (MART) of
Gordon, Bender and Herman; we include a derivation of MART within the same alter-
nating minimization framework and provide an elementary proof of the convergence of
MART in the consistent case, extending the theorem of Lent. Some partial results on
the behavior of MART in the inconsistent case are also discussed.

1. Introduction. In 1976 Rockmore and Macovski [1] suggested that
the statistical model of independent Poisson emitters play a more explicit
role in emission tomography image reconstruction and that the vector of
spatially distributed Poisson means be estimated using the well known
“maximum likelihood” (ML) procedure. In their 1982 paper [2] Shepp
and Vardi adopted this suggestion and employed the iterative “expectation
maximization ” (EM) algorithm, presented in a more general setting by
Dempster, Laird and Rubin [3], to obtain the ML solution. Working inde-
pendently, Lange and Carson [4] obtained some convergence results for the
EMML. A more complete treatment of convergence was given in [5], using
results of [6]. Regularization of the EMML using penalty functions derived
from a Bayesian framework was included in [7]. In [§] Titterington noted
that the EMML leads to an iterative algorithm for finding nonnegative so-
lutions of the linear system y = Pz, where y > 0, P > 0 is an I by J matrix
with column sums 1 and # > 0 is sought. In the inconsistent case, in which
there are no nonnegative solutions of y = Pz, the algorithm produces a
nonnegative minimizer of K L(y, Px); here K L(a,b) denotes the (nonsym-
metric) ullback-Leibler or cross-entropy distance between the nonnegative
vectors @ and b : K L(a,b) =3 a, log(an/by) + b, — a, > 0.

A second algorithm, discovered independently by Schmidlin [9,10] and
by Darroch and Ratcliff [11,12]in 1972, and rediscovered in 1992 and named
the “simultaneous MART” (SMART) algorithm [13,14], leads to a nonneg-
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ative minimizer of K L(Px,y). The EMML and SMART algorithms are
similar in many respects, but the nonsymmetric nature of the KL distance
leads to curious divergences in the theoretical development, with the re-
sult that certain questions that have been answered for SMART remain
unsolved for EMMIL.

The SMART algorithm is related to the “multiplicative algebraic re-
construction technique” (MART) [15] as the Jacobi method is related to
Gauss-Seidel; MART updates the estimate after each calculation involving
a single equation, whereas SMART updates the estimate only after all the
equations have been considered. The derivations of SMART and MART
within a framework of cross-entropy minimization are quite similar and the
algorithms give the same solution in the consistent case. In all the simula-
tions of the inconsistent case we have considered, the MART behaves the
same way the ART does, converging, not to a single vector, but to a limit
cycle of as many vectors as there are equations. It remains to prove that
this always happens and to uncover properties of this limit cycle.

The purpose of this article is to present the development of these al-
gorithms in a way that highlights both the similarities and the differences,
as well as to illustrate the important role of the KL distance in this devel-
opment. In what follows results pertaining to one of the algorithms will be
labeled accordingly. We first develop the EMML and SMART in parallel,
and then treat the MART.

2. The EMML and SMART algorithms. EMML In emission tomog-
raphy the EMML is typically applied in the inconsistent case, in which,
because of additive noise, there is no nonnegative solution of y = Pz. So
the algorithm is viewed primarily as a minimizer of K L(y, Pz). Either
1> J orl<.J,and both are usually large.

SMART Darroch and Ratcliff [11] designed their algorithm to sclect one
probability vector out of the many satisfying a given set of linear con-
straints; typically { < J. For example, we might want a probability vector
on a product space having prescribed marginals. So the SMART was ini-
tially viewed as minimizing K L(z, %) over all # > 0 with hard constraints
y = Pz. In the inconsistent case, it turns out that SMART minimizes
K L(Pw,y) [13,14], hence the connection with EMML.

In what follows we place no limitations on I and J and consider the
behavior of both algorithms in the consistent and the inconsistent cases.
By considering the algorithms in parallel we can see how arguments valid
for SMART break down when applied to EMML.

2.1. Projecting onto convex sets. Let B = {r = r(z) = {r;; =
x; P jyi/Pxi}t}, so that 3”7 ; = yi for each fixed i.Let @ = {q = ¢q(z) =
1¢i; = Pjjxz;}}. Notice that if we can find a ¢(z) in the intersection of
R and  then y = Pz, so we have found a nonnegative solution. In both
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algorithms below the idea is to alternately project onto each of the two
sets; only the distances involved differ. For both EMML and SMART we
begin with 2 > 0.

EMML 1) minimize K L(r(z), ¢(z*)) to get = = z*;
2) minimize K L(r(z*), q(x)) to get & = z#+1;

then the EMML ATLgorithm is zf*' = 253" P, ;(y;/Pz}), for each
j=1,..,Jandfor k=0,1,2,...

SMART 1) minimize K L(q(z™),r(z)) to get = = 2™,
2) minimize K L(g(z), r(z™)) to get z = z™+1;

then the SMART algorithm is z;-n"'l = z"expy_ P jlog(y; / Pal™)], for
each j=1,...,Jand form =0,1,2, ...

The convex sets [t and @ occur in the convergence proofs in [5] and in
[6,12].

2.2, Orthogonality. In each of the minimizations above a sort of or-
thogonal projection is taking place. Associated with each projection is a
“Pythagorean identity” involving the KL distance, expressing the under-
lying orthogonality. It is best te think of KL as distance squared for the
purpose of understanding these identities.

EMML 1 KL(r(2), ¢(z*)) = K L(r(a*), q(z*)) + K L(r(z), r(z*)).

EMML 2 KL(r(z*),q(z)) = KL(r(z*), g(z*+t")) + KL(z* 1, 2).

SMART 1 KL(g(z™),r(z)) = KL(g(x™),r(z™)) + KL(z™,z) —
KL(Pz™, Pz).

SMART 2 KL(q(x), (™)) = KL(g(z™*), r(2™)) + K L{z, ™).

Note: we have that, for all # and z,

(2.1) KIL(z,z)— KL(Pz,Pz) = EEI{L(P@'JCUJ;,H,ijPZL‘,i/PZ@) > 0.

Note: since K L(r(z), ¢(x)) = K L{y, Px) and K L(q(z),r(z)) = K L(Pz,y),
the functions to be minimized with respect to # to get 2! and ™! are

(2.2) KL(r(z%), q(z)) = K L(y, P2) + K L(r(z"), r(z)),

for EMML, and, for SMART,

(2.3) KL{q(x),r(2™)) = KL(pz,y) + KL(z,2™) — K L(Pz, Px™).

Since the functions we wish ultimately to minimize are K L(y, Px) and
K L(Pzx,y) respectively, we can view (2.2) and (2.3) as sequential uncon-
strained methods involving barrier or penalty functions in the sense of [16].

The problem of minimizing a function f(a), subject to the nonneg-
ativity constraints @ > 0, will play a central role in what follows. The
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Kuhn-Tucker conditions [16] are necessary for > 0 to be a global mini-
mizer of f(z):

(2.4) 6f(m)/8;cJ =0, if L > 0;
(2.5) 0f(2)/dx; >0, ifa;=0.

Here df(x)/0x; denotes the first partial derivative of f, with respect to
the jth entry of x, evaluated at the vector x. The functions f we shall be
considering are convex; for such functions (2.4) and (2.5) are also sufficient
for x to be a global minimizer.

2.3. Necessary conditions for minimizers. Applying (2.4) to the
function f(z) = K L(y, Pz) for EMML, and to the function f(z) = K L(Pz,y)
for SMART, we ohtain (2.6) and (2.7) respectively, for any z > 0 minimiz-
g f(x):

(2.6) 1 =XPF;;(y;/Px;), for all j such that z; > 0;
(2.7) 1 =exp[XF; ;log(yi/ Px;)]for all j such that z; > 0.

The EMML and SMART iterations can then be derived from (2.6) and
(2.7); multiply both sides by z; to obtain a fixed-point equation valid for
all z; and then use the most recent estimate of # on the right side to
produce the next estimate of z on the left. Of course a more sophisticated
derivation is required if convergence is to be established.

EMML 3 The sequence {z*} is contained within a compact set.

Proof. $x¥§ = Xy, for each k. O
SMART 3 The sequence {2} is contained within a compacl set.

Proof. Ex;-” < By; for each k. 0

We shall denote by @* an arbitrary subsequential limit of cither {z*}
or {z™}.

EMML 4 {KL(y, Pz*)} is decreasing and so {& L(zF*!, 2%)} is going to
Z€TO.

Proof. We have K L(y, Pz*) = K L(y, Pe*+1) + KL(r(z*), r(z*+t1)) +
K L(z**1 2%) from EMML 1 and EMML 2. O
SMART 4 {KL(Px™,y)} is decreasing and so {KL(z™,2™*1)} is going
to zero.

Proof. The argument is similar to that of EMML 4. O
EMML-SMART 5 For either of the two iterative schemes ahove, let 2’
denote the next ferm in the iteration following . Then (&™) = 2*, that is
any subsequential limit point is a fixed point of the iteration.

We turn not the the consistent case, in which nonnegative solutions of
y = Pz exist.

2.4. Consistent case. Throughout this subsecction we assume that
x> 0 satisfies y = Px.
EMML 6 KL(x,2") — K L{z, 2"t > K L(y, Pa*) > 0, so {K L(y, Pz*)}

goes to zero.
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Proof. The left side is Xa; log(XF; ju; / Pei) > Taj (ZP; j log(yi /Pa;)) =
K L(y, Pz*), since Sk = ¥alt!. 0
SMART 6 K L(z, ™)~ K L(z, ™) > K L(Pz™, ) > 0,50 {K L(Pa™, y))
goes to zero.

Proof. KL{(z,2™)= KL(z,2™ ")+ KL(Pz™, y)+K L(g(2™*1), r(z™)).
O
EMML-SMART 7 y = Pz”

EMML 8[2,4,5,6,7,13] The sequence {z*} converges to z* = #°, K L(z, 2*)
< 00, so the support of 2% is maximal over all solutions z.

Proof. Use = z* in EMML 6. Then {K L(z*,2%)} is decreasing. [
SMART 8 [9,10,11,12,13,14] The sequence {z™} converges to z* = x°;
K L(x,2°%°) < oo, so the support of 2 is maximal over all solutions . In
addition, °° is the unique solution for which K L(z,2%) is minimized. If
z% is a constant vector then x°° is the maximum Shannon entropy solution.

Proof. The first part is similar to the proof of EMML 8. For any solu-
tion @ we have K L(z,2™) — K L(z,2™) = KL(Pa™,y) + KL(g(z™+!),
r(x™)), which is independent of the @ chosen. Consequently, hy “tele-
scoping”, KL(z,z") — K L(z,z°) is also independent of . Therefore,
minimizing K L(z,z”) over all solutions x > ( is equivalent to minimiz-
ing K L(z,2%) over the same z; but the solution to the latter problem is
obviously 2®. O
EMML The difference K L(z, z*)— K L(z, 2*+1) is not independent. of x, so
the proof above breaks down when applied to the EMML case. It remains
an open question to which solution the EMML converges in this case.

2.5. Inconsistent case. We assume now that there are no 2 > 0 for
which y = Pz.

LEMMA 2.1. For any nonnegative veclors @ and b we have K L(a,b) >
KL(Sa,,Sby).

Proof. Minimize the left side subject to equality constraints on Xa,
and ¥b,. O
EMML 9 Let # > 0 be any nonnegative minimizer of K L(y, Pz). Then
#' = r and we have K L(x,z") > K L(r(z),r(z")) > K L(z,z"t"), so that
{KL(z,z*)} is decreasing and K L(z,z*) < oco. Therefore K L(x,z*) >
KL(r(z),r(z*)) > KL(z,z*), so that KL(z,2*) = KL(r(z), r(z*)).

Proof. That ¥’ = z [ollows from the Kuhn-Tucker theorem and the
definition of the iteration. The second inequality follows from the lemma.
The first inequality is a little harder. We have

KL(r(x),q(z*)) = KL(r(z),q(2)) + KL(z,2") = KL(y, Px) + K L(z, z"),
and also

KL(r(z),q(z%)) = KL(r(z"),q(x*)) + KL(r(z),r(z")) = KL{y, Pz*) +
+K L(r(z), r(z*)).
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Since K L(y, Pz) < K L(y, Px*) the result follows. O
SMART 9 Let @ > 0 be any nonnegative minimizer of K L(Pz,y). Then
v' = @ and we have K L(x,2™) > KL(z,2™*), so that {K L{z,z™)} is
decreasing and K L(z,2™) < oco.

Proof. That 2’ = 2 follows from the Kuhn -Tucker theorem and the
definition of the iteration. We have

KL(z,2™) -~ K L(z, ™) =
KL(Pz™ y) - KL(Pz,y) + KL(Pz, Px™) + K L{z™ &™) —
—KL(Pz™ Pz™) > 0;

note that K L(Pz™+ y) — K L(Pz,y) > 0 by the choice of z. [
EMML 10 [2,4,5,6,7,13] Pz* = Pz, s0 2" is a global nonnegative minimizer
of KL(y, Pz). So {KL(2*,z*)} is decreasing and {2*} converges to z* =

xOO

Proof. We have
KL(r(x),q(z*)) = K L{y, Pz) + K L(z, «*)
and
KL(r(z),q(z")) = KL(y, Pe")+ K L(r(z),r(2")) = K L(y, Pz")+ K L(x, 2*).

Since KL{x,2*) < oo, KL(y, Px*) = KL(y, Pz) follows. By the strict
convexity of K L the optimal Pz 1s unique, even if z is not, so Pz* = Pu,
The other assertion follows by using z* in place of  in EMML 9.0
SMART 10 [13,14] Pe* = P, so that z* is a global nonnegative mini-
mizer of KL(Pz,y). Therefore {KL(x*,2™)} is decreasing and so {2}
converges to * = ¢*, In addition, 2% is the unique nonnegative minimizer
of K L(Pxz,y) for which K L{x,2°) is minimized.

Proof. From the proof of SMART 9 we have that K L{z,z™) — K L(z,
2™ty > KL(Pxz, Pe™), so it follows that {K L(Pz, Px™)} converges to
zero; hence KL(Px, Pe*) = 0. Now use 2* as z in SMART 9. To prove the
last assertion, we not that K L(z,2™)— K L(z, 2™%'}) is again independent,
of & (but not of Pz, which is unique, even if  is not). Use the “telescoping”
argument as in the proof of SMART 8. [

EMML Note that the distance K L{z,2*) — K L(z,zF*t') is not inde-
pendent of z, so that same argument fails for EMML. It remains an open
question to which nonnegative minimizer of K L(y, P2) the EMMI, con-
verges.

2.6. Uniqueness of the solution in the inconsistent case. Again
let x denote a nonnegative minimizer of K L(y, Px) or of KL{Pz,y) as
appropriate. II we assume that P has the “full rank property” then z is
unique in both cases.
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Definition Say that the matrix P has the “full rank property” (FRP)
if P and all the matrices () obtained from P by deletion of columns have
full rank.

If we assume the FRP for P, we obtain the following uniqueness and

support results:
EMML 11 [13] There is a subset S of {1,2,...,J}, having cardinality at
most I — 1, such that, for each nonnegative minimizer 2 of K L{y, Pz), we
have x; > 0 only if j is in 5. Therefore there is but one such x, and it has
fewer than [ nonzero entires.

Proof. From z' = z it follows that if #; > 0, then L5 ;(y;/Px;) = 1.
Let u = (u;) = (y;/Px;); note that Pz is unique, even if  is not. Let @
be obtained from P by deleting the jth column whenever z; = 0 for all z.
Then we have @Tu = 1 = (1,..., )", But, from the assumption that the
columns of P sum to 1 it follows that Q71 = 1. Since @ has full rank, it
follows that if € has I or more columns then @ is one-to-one, hence u = 1,
or the system y = Pz is satisfied. O
SMART 11 There is a subset S of {1,2,...,J}, having cardinality at most
I — 1, such that for each nonnegative minimizer 2 of K L(Pz,y), we have
x; > 0only if j 1s in 5. Therefore there is but one such z, and it has fewer
than I nonzero entries.

Proof. The proof is essentially the same as that of EMML 11. O
Comment We have not established that the sets S in the two theorems
are the same, although this has been the case in all simulations we have
performed.

3. The MART algorithm. We can obtain the MART algorithm [15]
by using an alternating minimization approach similar to that used for
SMART above. However, each step of the MART iteration involves only a
single equation; therefore we must minimize a different distance each time,
depending on which equation is being used at that step. The distance
associated with the ith equation is

(3.1) Gi(z,2) = KL(z,2) — KL(Pz, Pe;) + KL(Pz,y).

We know that K L(z, )~ KL(Pz, Pz) > 0,s0 G;(z,2) > 0. Beginning
with z° > 0, the MART iterative scheme is obtained as follows: for m =
0,1,2,...and i = m(modI) + 1, perform

Step 1):  minimize G;(2™, z) to get z = z™;
Step 2):  minimize G;(z,2™) to get z = 2™+,
then the MART algorithm is

(3.2) z}’"’“ = zj" exp[P; j log(yi/Pz")] = z;”(yi/.Pz;”)P"ﬂ

foreach j =1,...,J and for m =0,1,2,....
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3.1. MART in the consistent case. We prove the convergence of
the MART algorithm in the consistent case in a manner similar to that
used for SMART. Directly from the definition we have
MART 1 Gi(2™,2) = KL(z™,x) — KL(Pz", Pa;) + KL(Pz™, y;).
MART 2 Gi(z,2™) = Gi(z™H ™) + K L(z, z™H).

Proof. Calculate Gi(z,2™) — Gi(z™H ™). O

Assume that 2 > 0 is such that y = Pz. We then have
MART 3 The sequence {KL(x,z™)} is decreasing and so {G;(z™t1, ™)}
and { K L(y;, Pz")} converge to zero and {z™} is contained within a bounded
set.

Proof. From the definition of (¢;(z, ) and MART 1,2 we have

KL(z,z™) = Gi(x,2™)+ KL(Pz;, Pz*) — KL(Pxz;,y;) = Gi(z,2™) +
+KL(Pr;, Pz")

S0
KL(x,2™) = KL(z, 2"y = G (2™ ™) + K L(y;, P=™).

O

We prove the following theorem:
MART 4 When there are nonnegative solutions of y = Pz the MART
sequence {z™} converges to the unique solution for which KL(z,2z%) is
minimized. If 2% is a constant vector, then {z™} converges to the solution
maximizing the Shannon entropy.

Remark Lent [17] has shown convergence to the maximum Shannon
entropy solution for the MART case and for z° a constant vector.

Proof. From MART 1 (2™ 2my) = KL(zm+ 2y — KL(PzH
Pzl 4+ KL(Pz" y). Since {K L(y;, Pz™)} goes to zero, it follows that
{KL(Pz"T y) — KL(P2TL P2)) goes to zero, so {KL(zm*t, 2y}
goes to zero. If z* is any cluster point of {z™} then z* is left unchanged
by the iterative process, so y = Pz*. Using z = z* in MART 3, we find
that {K L(z*,2z™)} is decreasing; it follows that {z™} converges to z*. The
difference K L(z, 2™)— K L(z, z™*1) is independent of x, so long as y = Pu;
therefore, K L(x,z") — K L(z,z*) is also independent of 2. It follows that
minimizing K L(z, 2°) over all z > 0 for which y = Pz is equivalent to
minimizing K L(z, z*) over the same w. But the solution to the latter
problem is obviously x = z*. The theorem is proved. 0O

In [18] Censor and Segman generalize the MART algorithm to include
block-iterative versions, in which disjoint subsets of the equations are used
at cach step. MART is an extreme case, in which each subset corresponds
to a single equation. At the other extreme, they use all the equations
within each step; their algorithm is similar to the SMART algorithm, but
includes a weighting term. Their proof of convergence seems to require
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the weighting. For the SMART case our normalizing the column sums to
one eliminates the need for the weighting; for MART the normalization
18 not required. They also do not consider non-constant 2°. In [19] it is
shown that block-iterative versions of MART and SMART converge in the
consistent case, for all partitions of the equations into blocks, but that no
such general result is available for EMML.

In the inconsistent case, in which y = P has no nonnegative solutions,
the behavior of MART remains an open question. In every simulation we
have considered, MART produces a limiting cycle of vectors, one for each
equation, generally; in this respect, the behavior of MART is analogous to
that of ART in the inconsistent case. Proving the existence of the limit
cycle is complicated by the fact that, unlike ART, the MART is not a (KL)
contraction, in general, and unlike SMART, we have no characterization of
the vectors of the limit cycle as the solution of some optimization. On the
positive side, we can prove the MART version of EMML 11 and SMART
11, which shows that the vectors of the limit cycle, when they exist, have
no more than I-1 nonzero entries. Because the vectors of the limit cycle are
not actually on the hyperplanes we can use them to extract a new “data”
vector, to replace y. If we then repeat the MART, with this new y replacing
the previous one and with the supports restricted to that of the previous
limit cycle vectors, we obtain a nested iterative scheme that eventually
converges to a singleton limit cycle; this singleton can be characterized as
the limit of the SMART algorithm, using the original y but subject to the
added constraint that the support be limited to that of the singleton. This
result assumes, of course, that the limiting cycles exist at each step of the
way.

A special case of the MART algorithm (3.2), in which the matrix P
has entries that are either zero or one, was considered in the 1930’ by
Sheleikhovskii and by Kruithof. In [20] Bregman proves MART 4 for this
special case and extends these ideas to include more general nonlinear pro-
jections in [21]. In [22] Krupp discusses Kruithof’s method and considers
the case of general nonnegative matrix P. Krupp presents the form of
the solution for general P, but does not explicitly describe the MART al-
gorithm for this general case; some have suggested that he discusses the
SMART algorithm, but a close reading of [22] shows that not to be the
case. The MART algorithm as presented in [15] is also this special case of
(9), but in [23] the full MART algorithm is considered.
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discussions on these matters.
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