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Abstract

The Baillon–Haddad Theorem asserts that, if the gradient operator of a
convex and Fréchet differentiable function on a Hilbert space is nonexpansive,
then it is firmly nonexpansive. This theorem plays an important role in it-
erative optimization. In this note we present a short, elementary proof of a
generalization of the Baillon–Haddad Theorem.
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1 Introduction

We denote by H a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We say

that an operator T : H → H is convergent if, for every starting vector x0, the sequence

{xk} defined by xk = Txk−1 converges weakly to a fixed point of T , whenever T has a

fixed point. Fixed-point iterative methods are used to solve a variety of problems by

selecting a convergent T for which the fixed points of T are solutions of the original

problem. It is important, therefore, to identify properties of an operator T that

guarantee that T is convergent.

An operator T : H → H is nonexpansive if, for all x and y in H,

‖Tx− Ty‖ ≤ ‖x− y‖. (1.1)
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Just being nonexpansive does not make T convergent, as the example T = −Id
shows; here Id is the identity operator. It doesn’t take much, however, to convert

a nonexpansive operator N into a convergent operator. Let 0 < α < 1 and T =

(1 − α)Id + αN ; then T is convergent. Such operators are called averaged [1, 3, 6]

and are convergent as a consequence of the Krasnosel’skii-Mann Theorem [5].

A operator T : H → H is firmly nonexpansive if, for all x and y in H,

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2. (1.2)

It is not hard to show that T is firmly nonexpansive if and only if T = 1
2
(Id + N),

for some nonexpansive operator N . Clearly, then, if T is firmly nonexpansive, T

is averaged, and therefore T is nonexpansive, and all firmly nonexpansive operators

are convergent. Also, T is firmly nonexpansive if and only if G = Id − T is firmly

nonexpansive. The Baillon–Haddad Theorem is the following.

Theorem 1.1 (The Baillon–Haddad Theorem) ([2], Corollaire 10]) Let f : H →
R be convex and Gâteaux differentiable on H, and its gradient operator T = ∇f non-

expansive. Then f is Fréchet differentiable and T is firmly nonexpansive.

In [2] this theorem appears as a corollary of a more general theorem concerning

n-cyclically monotone operators in normed vector space. In [4] Bauschke and Com-

bettes generalize the Baillon–Haddad Theorem, giving several additional conditions

equivalent to the two in Theorem 1.1. Their proofs are not elementary.

The Baillon–Haddad Theorem provides an important link between convex opti-

mization and fixed-point iteration. If g : H → R is a Gâteaux differentiable convex

function and its gradient is L-Lipschitz continuous, that is,

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖, (1.3)

for all x and y, then g is Fréchet differentiable and the gradient operator of the

function f = 1
L
g is nonexpansive. By the Baillon–Haddad Theorem the gradient

operator of f is firmly nonexpansive. It follows that, for any 0 < γ < 2
L

, the operator

Id − γ∇g is averaged, and therefore convergent. The class of averaged operators is

closed to finite products, and PC , the orthogonal projection onto a closed convex set

C, is firmly nonexpansive. Therefore, the projected gradient-descent algorithm with

the iterative step

xk+1 = PC(xk − γ∇g(xk)) (1.4)

converges weakly to a minimizer, over C, of the function g, whenever such minimizers

exist.
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In this note we present a short and elementary proof of the following theorem,

using only fundamental properties of convex differentiable functions.

Theorem 1.2 Let f : H → R be convex and Gâteaux differentiable. The following

are equivalent:

1. the function F (x) = 1
2
‖x‖2 − f(x) is convex;

2. for all x and z we have

1

2
‖z − x‖2 ≥ Df (z, x)

.
= f(z)− f(x)− 〈∇f(x), z − x〉 ≥ 0; (1.5)

3. the gradient operator T = ∇f is firmly nonexpansive;

4. the function f is Fréchet differentiable and T = ∇f is nonexpansive.

The proof of Theorem 1.1 given in [10] was reproduced in [7]. The proof given

here for Theorem 1.2 is based on the one given for Theorem 1.1 in [8] and [9].

2 Proof of Theorem 1.2

Prove (2), assuming (1), that F is convex. Since F is convex, and∇F (x) = x−∇f(x),

we have

F (z) ≥ F (x) + 〈∇F (x), z − x〉, (2.1)

which is equivalent to

1

2
‖z − x‖2 ≥ Df (z, x). (2.2)

Prove (3), assuming (2), that Equation (1.5) holds. Let y ∈ H be arbitrary and fixed.

Let d(x) = Df (x, y). Then d(x) is convex and ∇d(x) = ∇f(x) −∇f(y). It is easily

seen that Df (z, x) = Dd(z, x), so from (1.5) we have

1

2
‖z − x‖2 ≥ Dd(z, x) = d(z)− d(x)− 〈∇f(x)−∇f(y), z − x〉. (2.3)

Now let z = x−∇f(x) +∇f(y). Inserting this z into (2.3), we obtain

Df (x, y) = d(x) ≥ d(z) +
1

2
‖∇f(x)−∇f(y)‖2 ≥ 1

2
‖∇f(x)−∇f(y)‖2. (2.4)

Similarly, we can show that

Df (y, x) ≥ 1

2
‖∇f(x)−∇f(y)‖2. (2.5)
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Adding the previous two inequalities, we get

〈∇f(x)−∇f(y), x− y〉 ≥ ‖∇f(x)−∇f(y)‖2, (2.6)

so T = ∇f is firmly nonexpansive. Prove (4), assuming (3), that T = ∇f is firmly

nonexpansive. It is clear that T is then nonexpansive. Since the gradient operator

is continuous, f is Fréchet differentiable. Prove (1), assuming (4). The function

F (x) = 1
2
‖x‖2 − f(x) is Fréchet differentiable and ∇F (x) = x−∇f(x). Since

〈∇F (z)−∇F (x), z − x〉 ≥ ‖z − x‖(‖z − x‖ − ‖∇f(z)−∇f(x)‖) ≥ 0,

we know that F (x) is a convex function.

Notice that we have actually proved a somewhat stronger inequality than (1.2):

〈∇f(x)−∇f(y), x− y〉 − ‖∇f(x)−∇f(y)‖2

≥ Df (x−∇f(x) +∇f(y), y) +Df (y −∇f(y) +∇f(x), x) ≥ 0. (2.7)

We get a slightly more general version of Theorem 1.2, but with a less elementary

proof, if we assume that f is lower semi-continuous and omit the assumption that

f is Gâteaux differentiable. Once we assume 1., the Gâteaux differentiablility of f

follows from Proposition 2.1 and Proposition 2.2.

Definition 2.1 Let f : H → R be arbitrary. The subdifferential of f , at the point x,

is the set

∂f(x) = {u|〈u, y − x〉 ≤ f(y)− f(x), for all y ∈ H}.

The members of ∂f(x) are the subgradients of f at x.

For any lower semi-continuous f : H → R, the function f is convex if and only if

∂f(x) is not empty, for all x (see [5], Proposition 16.14).

Proposition 2.1 Let f : H → R and g : H → R be arbitrary functions. Then

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x). (2.8)

Proof: The containment follows immediately from the definition of the subdifferen-

tial.

Since both f and g are finite-valued, the containment in (2.8) actually goes both

ways, if both f and g are lower semi-continuous. In some discussions, convex functions

may be allowed to take on the value +∞. In such cases only the containment in (2.8)

may hold. See Corollary 16.38 of [5].
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Proposition 2.2 If f : H → R and g : H → R are both lower semi-continuous

and convex, and f + g = h is Gâteaux differentiable, then both f and g are Gâteaux

differentiable.

Proof: From Proposition 2.1 we have

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x) = ∂h(x) = {∇h(x)}.

Therefore, both ∂f(x) and ∂g(x) are nonempty and must be singleton sets. Therefore,

both functions are Gâteaux differentiable, according to Proposition 17.26 of [5].
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