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Abstract

We consider here the problem of minimizing a convex function h : RK → R
over x with T (x) = 0, where T : RK → RM is (possibly) nonlinear. We examine
first the split-Bregman iterative algorithm proposed by Goldstein and Osher for
L1 regularized image reconstruction, and then turn to proximal minimization
algorithms (PMA) with Bregman distances, sometimes called Bregman itera-
tion. The PMA form a subclass of the SUMMA algorithms, from which we
can deduce important properties of the PMA. We show that, while there is
no PMA equivalent to the Goldstein-Osher (GO) algorithm in general, equiva-
lence in the linear case provides useful suiggestions as to how the more general
GO algorithm should be formulated. We also provide new results for the GO
algorithm without using Bregman iteration.
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1 Background

In [11] the authors consider the L1-regularization problem of minimizing the function

‖Φ(u)‖1 +H(u), (1.1)

where both ‖Φ(u)‖1 and H(u) are convex. Such problems occur frequently in image

science and elsewhere. They reformulate the problem as a constrained minimization

problem as follows: minimize

E(u, d) = ‖d‖1 +H(u), (1.2)
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subject to Φ(u)− d = 0. In this way they “decouple” the L1 term from the “energy”

term.

They note that one penalty-function approach would be to minimize

‖d‖1 +H(u) +
λk
2
‖Φ(u)− d‖22, (1.3)

to get (uk, dk). As λk → +∞ the second term becomes increasingly important and the

limit (u∗, d∗) of such a sequence would surely have Φ(u∗)−d∗ = 0. As k grows larger,

however, the minimization problem becomes increasingly unstable. To avoid this,

they propose an alternative algorithm, which we shall call here the Goldstein-Osher,

or GO, algorithm.

1.1 The Goldstein-Osher Algorithm

The GO algorithm begins with an arbitrary choice of the vector b0. Having found

uk−1, dk−1, and bk−1, the next iterate (uk, dk) minimizes

‖d‖1 +H(u) +
λ

2
‖Φ(u)− d− bk−1‖22. (1.4)

The next bk is

bk = bk−1 − (Φ(uk)− dk). (1.5)

It is clear how the penalty-function approach in Equation (1.3) forces Φ(u∗) = d∗,

but it is not obvious how changing bk−1 to bk would have the same effect. Essentially

what appears to happen is that, as k → +∞, an increasingly large vector is added to

Φ(u)− d prior to taking the square of the Euclidean norm. This has an effect similar

to taking k increasingly large in the penalty-function approach. In the linear case of

the GO problem Φ(u) = Ru for some M by N matrix R. The following theorem is

essentially their Theorem 2.2.

Theorem 1.1 If, for some k, we have Φ(uk) = dk, then (uk, dk) minimizes E(u, d) =

‖d‖1 +H(u), subject to Φ(u)− d = 0.

Proof: Let (û, d̂) satisfy Φ(û)− d̂ = 0, and minimize E(u, d) = ‖d‖1 +H(u) over all

(u, d) with Φ(u)− d = 0. Then

E(uk, dk) +
1

2
‖Φ(uk)− dk − bk−1‖22 ≤ E(û, d̂) +

1

2
‖Φ(û)− d̂− bk−1)‖22,

so that E(uk, dk) ≤ E(û, d̂).
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It is certainly restrictive to assume that Φ(uk)− dk = 0 for finite k, although this

can sometimes happen [12]. Clearly, a better result would assert that the sequence

{(uk, dk)} converges to some (u∗, d∗) with Φ(u∗)− d∗ = 0. Then (u∗, d∗) would solve

their original problem.

1.2 The More General Problem

For the remainder of this paper we shall employ the following more general formulation

of the basic problem. Let K ≥M , T : RK → RM be a (possibly nonlinear) operator,

and h : RK → R be a convex function. The problem is to minimize h(x) over x in

the nonempty set S = {x|T (x) = 0}. For the GO problem we have K = N + M ,

x = (u, d), h(x) = E(u, d) = ‖d‖1 +H(u), and T (x) = Φ(u)− d. In the linear case of

the GO problem we have

T (x) = Φ(u)− d = Ru− d =
[
R −I

] [u
d

]
, (1.6)

so the operator T is linear.

Proximal minimization with Bregman functions plays a central role in the dis-

cussion in [11]. These PMA form a subclass of the SUMMA algorithms, from which

important properties of PMA follow. In the next section we discuss the SUMMA

class and PMA.

2 Proximal Minimization and the SUMMA Class

Let C be a nonempty subset of an arbitrary set X and f : X → R. Consider the

problem of minimizing f(x) over x ∈ C. For each k = 1, 2, ... we minimize

Gk(x) = f(x) + gk(x), (2.1)

to get xk. We say that the gk are auxiliary functions (AF) if gk(x) ≥ 0 and gk(x
k−1) =

0; then the algorithm is an AF method. For any AF method the sequence {f(xk)} is

nonincreasing. We say that an AF method is in the SUMMA class [5] if, in addition,

the SUMMA Inequality holds; that is,

Gk(x)−Gk(x
k) ≥ gk+1(x), (2.2)

for all x ∈ C. We have the following theorem.

Theorem 2.1 If the auxiliary functions gk satisfy the SUMMA Inequality, then the

sequence {f(xk)} converges to β = infx∈C f(x).
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Proof: If not, then there is z ∈ C and β∗ such that

f(xk) ≥ β∗ > f(z) ≥ β.

From

gk(z)− gk+1(z) ≥ gk(z)−Gk(z) +Gk(x
k)

= f(xk) + gk(x
k)− f(z) ≥ β∗ − f(z) > 0,

it follows that {gk(z)} is a decreasing sequence of nonnegative terms whose successive

differences remain bounded away from zero, which is a contradiction.

Let h : RK → R be convex, but not necessarily differentiable. For each x and y

and p in the subdifferential ∂h(y), a Bregman distance associated with h is

Dh(x, y, p) = h(x)− h(y)− 〈p, x− y〉. (2.3)

Clearly, Dh(x, y, p) ≥ 0. Let f : RK → R be convex. The iterative step of the PMA

is then to minimize

Gk(x) = f(x) +Dh(x, x
k−1, pk−1) (2.4)

over all x to get xk. An easy calculation shows that

Gk(x)−Gk(x
k) = Df (x, x

k, vk) +Dh(x, x
k, pk) ≥ Dh(x, x

k, pk) = gk+1(x),

for all x, where vk ∈ ∂f(xk) and pk ∈ ∂h(xk). Therefore, every PMA is in the

SUMMA class and {f(xk)} is nonincreasing and converges to β = infx f(x).

Suppose that the sequence {xk} converges to some x∗. Then we know that f(x∗) ≤
f(x), for all x. Let M = {z|f(z) ≤ f(x), for allx}. Does x∗ minimize h(z) over all

z in M? Not necessarily. The PMA iteration involves Dh, not h itself, and Dh

does not determine h uniquely; adding any affine linear function to h does not alter

the corresponding Bregman distance. What has been shown for specific Bregman

distances, such as the Euclidean and Kullback-Leibler distances, is that x∗ minimizes

Dh(z, x
0) over all z in M . This is where the GO algorithm has the advantage. As

we shall show later, with certain assumptions, if {xk} converges to some x∗, then

T (x∗) = 0 and z = x∗ minimizes h(z) over all z with T (z) = 0.

3 When T (x) is Affine Linear

In this section we assume that T (x) = Ax − b for some M by K matrix A and

constant b ∈ RM . Our goal is to minimize h(x)+ λ
2
‖Ax−b‖22. Consider first the PMA

approach.
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Begin with some x0 and p0 ∈ ∂h(x0). For each k we obtain xk by minimizing

Gk(x) =
λ

2
‖Ax− b‖22 +Dh(x, x

k−1, pk−1). (3.1)

Then there is pk ∈ ∂h(xk) such that

0 = AT (Axk − b) + pk − pk−1.

Now we look at the GO algorithm.

Select some b0. For each k we obtain xk by minimizing

λ

2
‖Ax− b− bk−1‖22 + h(x). (3.2)

This is equivalent to minimizing

λ

2
‖Ax− b‖22 + 〈AT b− AT bk−1, x− xk−1〉, (3.3)

which suggests that, for equivalence, we want

pk−1 = AT bk−1 − AT b. (3.4)

It follows that we should select bk to be

bk = bk−1 + b− Axk; (3.5)

note that there is a typo in (2.10) of [11].

The PMA iteration begins with some x0 and p0 ∈ ∂h(x0). If we select x0 to be a

global minimizer of h(x), then 0 ∈ ∂h(x0), so we can select p0 = 0. This tells us that

the GO iteration should begin with b0 = b.

As we shall discuss later, we cannot expect there to be an equivalent PMA for the

GO iteration in the nonlinear case; it appears that equivalence holds only when T is

affine linear. However, we can reason by analogy and define bk as in [11] to be

bk = bk−1 − T (xk). (3.6)

Although there is much discussion of Bregman iteration in [11], it would appear that

it is used only to suggest Equation (3.6) for the nonlinear case.

In the sections to follow we shall obtain some new results concerning the GO

algorithm, and investigate the question of whether or not each sequence generated by

the GO algorithm is also a PMA sequence.
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4 More on the Goldstein-Osher Algorithm

Once again, let h : RK → R be a convex function, and T : RK → RM be a (possibly)

nonlinear operator. Let x̂ ∈ S minimize h(x) over all x in S. For each x ∈ RK let

T ′(x) ∈ RM×K be the Jacobian matrix for T at x and ∇T (x) = T ′(x)T . We assume

that the operators T and T ′ are continuous, that for each x there is an M by K

matrix B(x) such that B(x)∇T (x) = I, the identity matrix, and that the operator

B : RK → RM×K is continuous. For example, suppose that T (x) is affine linear, so

that there are matrix A and vector b with T (x) = Ax − b. Assuming that AAT is

invertible, we have ∇T (x) = AT and B(x) = (AAT )−1A.

Now the GO algorithm takes the following form. For arbitrary vector b0, and

having found xk−1 and bk−1, take xk to be the minimizer of the function

h(x) +
1

2
‖T (x)− bk−1‖22. (4.1)

Then there is vk ∈ ∂h(xk) such that

vk = ∇T (xk)(T (xk)− bk−1), (4.2)

and so

bk−1 = T (xk)−B(xk)vk. (4.3)

If the sequences {xk} and {vk} converge, then so does the sequence {bk}. Note that

we have not yet said how the next bk is to be defined.

If h is differentiable, then we have

∇h(xk) = ∇T (xk)(T (xk)− bk−1), (4.4)

so that

bk−1 = T (xk)−B(xk)∇h(xk). (4.5)

We have the following theorem.

Theorem 4.1 If h is continuously differentiable, and the sequence {xk} converges

to some x∗, then the sequence {bk} converges to some b∗. If T (x∗) = 0, then x∗

minimizes h(x) over x in S.

Proof: The first assertion follows from Equation (4.5) and continuity. We have

h(xk) +
1

2
‖T (xk)− bk−1‖22 ≤ h(x̂) +

1

2
‖T (x̂)− bk−1‖22,

6



so that, by taking limits, we have

h(x∗) +
1

2
‖b∗‖22 ≤ h(x̂) +

1

2
‖b∗‖22.

This theorem is similar to Theorem 2.2 of [11]; the latter does not require that h

be differentiable.

In the Goldstein-Osher algorithm we have

bk = bk−1 − T (xk). (4.6)

Now we can strengthen Theorem 4.1.

Theorem 4.2 Let h be continuously differentiable. Let bk be defined as in Equation

(4.6). If the sequence {xk} converges to some x∗, then T (x∗) = 0. Consequently, x∗

minimizes h(x) over x in S. If h is not differentiable, but the sequence {vk} converges,

then the same result holds.

Proof: We know that the sequence {bk} converges, according to Theorem 4.1 or the

convergence of the sequence {vk}. Therefore, by taking limits in Equation (4.6), we

have T (x∗) = 0.

5 Does the GO algorithm have an equivalent PMA?

First, consider the GO algorithm. For simplicity, we consider the case of differentiable

h. Let b0 be arbitrary. Let z1 minimize the function

h(x) +
1

2
‖T (x)− b0‖22, (5.1)

and

b1 = b0 − T (z1). (5.2)

Then

∇h(z1) +∇T (z1)(T (z1)− b0) = ∇h(z1)−∇T (z1)b1 = 0. (5.3)

or

∇h(z1) = ∇T (z1)b1. (5.4)
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Similarly,

∇h(z2) +∇T (z2)(T (z2)− b1) = ∇h(z2)−∇T (z2)b2 = 0, (5.5)

so

∇h(z2) = ∇T (z2)b2. (5.6)

Now consider the PMA.

Let x1 minimize

1

2
‖T (x)‖22 +Dh(x, x

0), (5.7)

for some x0. Then

∇h(x0) = ∇h(x1) +∇T (x1)T (x1). (5.8)

Similarly,

∇h(x1) = ∇h(x2) +∇T (x2)T (x2). (5.9)

If x1 = z1 and x2 = z2 then, from Equations (5.5) and (5.9) we have

∇h(x1)∇h(x2) +∇T (x2)T (x2) = ∇T (x2)b1, (5.10)

or

∇h(x1) = ∇T (x2)b1. (5.11)

But we also have

∇h(x1) = ∇T (x1)b1. (5.12)

This suggests that there will be an equivalent PMA only when ∇T (x) is constant, or

T (x) = Ax− b; that is, only when T (x) is affine linear.

6 Summary

xxxxx

8



References

[1] H. Bauschke and J. Borwein, Legendre functions and the method of random Breg-

man projections, J. Convex Analysis, 4 (1997), pp. 27–67.

[2] D. Butnariu, C. Byrne, and Y. Censor, Redundant axioms in the definition of

Bregman functions, J. Convex Analysis, 10 (2003), pp. 245–254.

[3] D. Butnariu, Y. Censor, and S. Reich (eds.), Inherently Parallel Algorithms in

Feasibility and Optimization and their Applications, Studies in Computational

Mathematics, 8, Elsevier, Amsterdam, 2001.

[4] C. Byrne, Bregman-Legendre multi-distance projection algorithms for convex fea-

sibility and optimization, in [3], pp. 87–100.

[5] C. Byrne, Sequential unconstrained minimization algorithms for constrained op-

timization, Inverse Problems, 24(1) (2008), article no. 015013.

[6] C. Byrne, Alternating minimization as sequential unconstrained minimization:

a survey, J. Opt. Th. Appl., electronic 154(3) (2012), DOI 10.1007/s1090134-2,

and hardcopy 156(3) (2013), pp. 554–566.

[7] C. Byrne, Iterative Optimization in Inverse Problems, CRC Press, Boca Raton,

FL (2014).

[8] Y. Censor and S. A. Zenios, Proximal minimization algorithm with D-functions,

J. Opt. Th. Appl., 73(3) (1992), pp. 451–464.

[9] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms and

Applications, Oxford University Press, New York (1997).

[10] A. Fiacco and G. McCormick, Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques, SIAM Classics in Mathematics (reissue),

Philadelphia, PA (1990).

[11] T. Goldstein and S. Osher, The split Bregman algorithm for L1 regularized prob-

lems, SIAM J. Imaging Sci., 2(2) (2009), pp. 323–343.

[12] S. Osher, Y. Mao, B. Dong, and W. Yin, Fast linearized Bregman iterations

forcompressed sensing and sparse denoising, UCLA CAM Report 08-37 (2008).

[13] R. Rockafellar, (1970) Convex Analysis, Princeton University Press, Princeton,

NJ (1970).

9


