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1 The Split feasibility Problem and the CQ Algorithm

1.1 The Split Feasibility Problem
The Split Feasibility Problem

Let A be a real M by N matrix, and C and Q non-empty closed, convex sets in
RN and RM , respectively.

The split feasibility problem (SFP) is to find a vector x in C, such that Ax is in Q.

The Inconsistent Case
When the SFP has no solution, it is sensible to seek a minimizer of the function

f(x) =
1
2
||PQAx−Ax||22, (1)

over x in C; PQ denotes the orthogonal projection onto Q.

1.2 The CQ Algorithm
The CQ Algorithm

For arbitrary x0 and k = 0, 1, ..., and γ in the interval (0, 2/ρ(AT A)), where
ρ(AT A) denotes the largest eigenvalue of the matrix AT A, let

xk+1 = PC(xk − γAT (I − PQ)Axk). (2)
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This is the CQ algorithm [9, 10]. The CQ algorithm converges to a solution of the SFP,
whenever solutions exist. When there are no solutions of the SFP, the CQ algorithm
converges to a minimizer, over x in C, of the function

f(x) =
1
2
||PQAx−Ax||22, (3)

whenever such minimizers exist.

1.3 Topics for Discussion
Topics for Discussion:

• The proof of convergence of the CQ algorithm;

• The algorithm in context- the CQ algorithm has particular cases, and is, itself, a
particular case;

• Approximation of the orthogonal projections;

• Relation to proximity operators and forward-backward splitting;

• The CQ algorithm and successive orthogonal projection;

• Extension to incorporate multiple sets;

• Use in radiation therapy;

• Use in dynamic emission tomography.

1.4 Applying the Krasnoselskii-Mann Theorem
Proof of Convergence

According to the Krasnoselskii-Mann Theorem [18], if T : RN → RN is an av-
eraged operator then the sequence {T kx0} converges to a fixed point of T , whenever
fixed points exist. The operator PC is averaged, since it is firmly non-expansive, and,
for γ in the interval (0, 2/ρ(AT A)), the operator I − γAT (I −PQ)A is also averaged.
The product of averaged operators is averaged, so the CQ algorithm converges to a
fixed point, if they exist, and these fixed points also minimize f(x) over x in C.

1.5 Averaged Operators
Averaged Operators

An operator T : RN → RN is non-expansive (in the Euclidean norm) if, for all x
and y, we have

||Tx− Ty||2 ≤ ||x− y||2. (4)

An operator S : RN → RN is averaged [4] if there is a non-expansive operator T and
α in the interval (0, 1), with

S = (1− α)I + αT. (5)
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Details

• The function f(x) is convex and differentiable on RN and its derivative is the
operator

∇f(x) = AT (I − PQ)Ax; (6)

see Aubin [2].

• Let h(x) be convex and differentiable and its derivative,∇h(x), be non-expansive.
Then ∇h(x) is firmly non-expansive; see Golshtein and Tretyakov [15].

• The derivative operator ∇f is λ-Lipschitz continuous for λ = ρ(AT A), there-
fore the operator I − γ∇f is averaged, for γ in (0, 2/ρ(AT A)).

1.6 Estimating ρ(AT A)

Estimating ρ(AT A)
The CQ algorithm employs the relaxation parameter γ in the interval (0, 2/ρ(AT A)),

where ρ(AT A) is the largest eigenvalue of the matrix AT A. Choosing the best relax-
ation parameter in any algorithm is a nontrivial procedure. Generally speaking, we
want to select γ near to 1/ρ(AT A). A simple estimate for ρ(AT A) that is particularly
useful when A is sparse is the following: if A is normalized so that each row has length
one, then the spectral radius of AT A does not exceed the maximum number of nonzero
elements in any column of A. A similar upper bound on ρ(AT A) was obtained for
non-normalized, ε-sparse A [9].

2 Particular Cases and Extensions

2.1 Particular Cases of the CQ Algorithm
Particular Cases of the SFP

It is easy to find important examples of the SFP: if C = RJ and Q = {b} then
solving the SFP amounts to solving the linear system of equations Ax = b; if C is a
proper subset of RJ , such as the nonnegative cone, then we seek solutions of Ax = b
that lie within C, if there are any. Generally, we cannot solve the SFP in closed form
and iterative methods are needed.

2.2 Landweber and Projected Landweber
Particular Cases of the CQ Algorithm

A number of well known iterative algorithms, such as the Landweber [17] and
projected Landweber methods (see [8]), are particular cases of the CQ algorithm.
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The Landweber Algorithm
With x0 arbitrary and k = 0, 1, ..., the Landweber algorithm for finding a (possibly

least-squares) solution of Ax = b has the iterative step

xk+1 = xk + γAT (b−Axk). (7)

The Projected Landweber Algorithm
For a general nonempty closed convex C, x0 arbitrary, and k = 0, 1, ..., the pro-

jected Landweber algorithm for finding a (possibly constrained least-squares) solution
of Ax = b in C has the iterative step

xk+1 = PC(xk + γAT (b−Axk)). (8)

The Simultaneous ART (SART)
Another example of the CQ algorithm is the simultaneous algebraic reconstruction

technique (SART) of Anderson and Kak [1] for solving Ax = b, for nonnegative matrix
A . Let A be an M by N matrix with nonnegative entries. Let Am+ > 0 be the sum
of the entries in the mth row of A and A+n > 0 be the sum of the entries in the nth
column of A. Consider the (possibly inconsistent) system Ax = b. For x0 arbitrary
and k = 0, 1, ..., let

xk+1
n = xk

n +
1

A+n

∑M

m=1
Amn(bm − (Axk)m)/Am+. (9)

This is the SART algorithm. With a change of variables, the SART becomes a particular
case of the Landweber iteration.

Changing Variables
We make the following changes of variables:

Bmn = Amn/(Am+)1/2(A+n)1/2, (10)

zn = xn(A+n)1/2, (11)

and

cm = bm/(Am+)1/2. (12)

Then the SART iterative step can be written as

zk+1 = zk + BT (c−Bzk). (13)

This is a particular case of the Landweber algorithm, with γ = 1. The convergence of
SART follows, once we know that the largest eigenvalue of BT B is less than two; in
fact, it is one [9].
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2.3 The CQ Algorithm and Successive Orthogonal Projection
Using the CQ Algorithm

We illustrate the use of the CQ algorithm to prove a convergence result for the
successive orthogonal projections method for the case of two non-intersecting convex
sets.

2.4 Convex Feasibility
The Convex Feasibility Problem

The convex feasibility problem(CFP) is to find a point in the non-empty intersection
C of finitely many closed, convex sets Cm, m = 1, ...,M , in RN .

The successive orthogonal projections (SOP) method (see Gubin, Polyak and Raik
[16]) is the following. Begin with an arbitrary x0. For k = 0, 1, ..., and m =
k(modM) + 1, let

xk+1 = Pmxk, (14)

where Pmx denotes the orthogonal projection of x onto the set Cm.

The SOP when C is not empty
Since each of the operators Pm is firmly non-expansive, the product

T = PMPM−1 · · · P2P1 (15)

is averaged. Since C is not empty, T has fixed points and the sequence {xk} converges
to a member of C. It is useful to note that the limit of this sequence will not generally
be the point in C closest to x0.

When C is empty
When the intersection C of the convex sets Cm is empty, the SOP cannot con-

verge. Drawing on our experience with two special cases of the SOP, the ART and the
Agmon-Motzkin-Schoenberg algorithms, we conjecture that there is a limit cycle, that
is, for each m = 1, ...,M , the subsequences {xnM+m} converge to c∗,m in Cm, with
Pmc∗,m−1 = c∗,m for m = 2, 3, ...,M , and P1c

∗,M = c∗,1; the set {c∗,m} is then a
limit cycle. For the special case of M = 2 we can prove this. The proof here uses the
CQ algorithm.

The Theorem

Theorem 1. Let C1 and C2 be nonempty, closed convex sets in RJ , with C1 ∩C2 = ∅.
Assume that there is a unique ĉ2 in C2 minimizing the function f(x) = ||c2 − P1c2||2,
over all c2 in C2. Let ĉ1 = P1ĉ2. Then P2ĉ1 = ĉ2. Let z0 be arbitrary and, for
n = 0, 1, ..., let

z2n+1 = P1z
2n, z2n+2 = P2z

2n+1. (16)

Then

{z2n+1} → ĉ1, {z2n} → ĉ2. (17)
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The Proof
We apply the CQ algorithm, with C = C2, Q = C1, and the matrix A = I , the

identity matrix. The CQ iterative step is now

xk+1 = P2(xk + γ(P1 − I)xk). (18)

Using the acceptable choice of γ = 1, we have

xk+1 = P2P1x
k. (19)

This CQ iterative sequence then converges to ĉ2, the minimizer of the function f(x).
Since z2n = xn, we have {z2n} → ĉ2. Because

||P2ĉ1 − ĉ1||2 ≤ ||ĉ2 − ĉ1||2, (20)

it follows from the uniqueness of ĉ2 that P2ĉ1 = ĉ2. This completes the proof.

2.5 Extensions of the CQ Algorithm
Extending the CQ Algorithm

The CQ algorithm has recently been extended in at least two different directions:
approximating the projection operators; and taking the C and Q to be intersections
of other convex sets. It can also be viewed as a particular case of forward-backward
splitting.

2.6 Approximating the Projection Operators
Approximating the Projections

The orthogonal projections PC and PQ needed in the iterative step of the CQ algo-
rithm need not be easy to implement. Extensions of the CQ algorithm that incorporate
approximations of these projections have been presented by Qu and Xiu [19], Yang
[22], and Zhao and Yang [23].

2.7 Proximal Minimization
Proximal Minimization

The CQ algorithm is a particular case of an iterative algorithm based on Moreau’s
notion of proximity operator.

2.8 Proximity Operators
Proximity Operators

The Moreau envelope of a convex function f is the function

mf (z) = inf
x
{f(x) +

1
2
||x− z||22}, (21)

which is also the infimal convolution of the functions f(x) and 1
2 ||x||

2
2. It can be shown

that the infimum is uniquely attained at the point denoted x = proxfz (see Rockafellar
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[20]). The function mf (z) is differentiable and ∇mf (z) = z − proxfz. The point
x = proxfz is characterized by the property z − x ∈ ∂f(x). Consequently, x is a
global minimizer of f if and only if x = proxfx.

The Conjugate Function
The conjugate function associated with f is the function f∗(x∗) = supx(〈x∗, x〉 −

f(x)). In similar fashion, we can define mf∗z and proxf∗z. Both mf and mf∗ are
convex and differentiable.

2.9 Moreau’s Theorem
Moreau’s Theorem

Theorem 2. Let f be a closed, proper, convex function with conjugate f∗. Then

mfz + mf∗z =
1
2
||z||2;

proxfz + proxf∗z = z;

proxf∗z ∈ ∂f(proxfz);

proxf∗z = ∇mf (z), and

proxfz = ∇mf∗(z). (22)

An Example
For example, consider the indicator function of the convex set C, f(x) = ιC(x)

that is zero if x is in the closed convex set C and +∞ otherwise. Then mfz is the
minimum of 1

2 ||x− z||22 over all x in C, and proxfz = PCz, the orthogonal projection
of z onto the set C. The operators proxf : z → proxfz are proximity operators.
These operators generalize the projections onto convex sets, and, like those operators,
are firmly non-expansive (see Combettes and Wajs [13]).

The support function of the convex set C is σC(x) = supu∈C〈x, u〉. It is easy to
see that σC = ι∗C . For f∗(z) = σC(z), we can find mf∗z using Moreau’s Theorem:

proxσC
z = z − proxιC

z = z − PCz. (23)

2.10 Using Moreau’s Theorem
Using Moreau’s Theorem

The minimizers of mf and the minimizers of f are the same. From Moreau’s
Theorem we know that

∇mf (z) = proxf∗z = z − proxfz, (24)

so ∇mfz = 0 is equivalent to z = proxfz.
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Proximal Minimization
Because the minimizers of mf are also minimizers of f , we can find global mini-

mizers of f using gradient descent iterative methods on mf .
Let x0 be arbitrary. Then let

xk+1 = xk − γk∇mf (xk). (25)

We know from Moreau’s Theorem that

∇mfz = proxf∗z = z − proxfz, (26)

so that Equation (25) can be written as

xk+1 = xk − γk(xk − proxfxk)

= (1− γk)xk + γkproxfxk. (27)

It follows from the definition of ∂f(xk+1) that f(xk) ≥ f(xk+1) for the iteration in
Equation (27).

2.11 The CQ Algorithm as Forward-Backward Splitting
Minimizing F (x) = f1(x) + f2(x)

In [13] Combettes and Wajs consider the problem of minimizing the function F (x) =
f1(x)+f2(x), where f2(x) is differentiable and its gradient is λ-Lipschitz continuous.
The function F is minimized at the point x if and only if

0 ∈ ∂F (x) = ∂f1(x) +∇f2(x), (28)

so we have

−γ∇f2(x) ∈ γ∂f1(x), (29)

for any γ > 0. Therefore

x− γ∇f2(x)− x ∈ γ∂f1(x). (30)

From Equation (30) we conclude that

x = proxγf1
(x− γ∇f2(x)). (31)

This suggests an algorithm, called the forward-backward splitting for minimizing the
function F (x).

2.12 Forward-Backward Splitting
Forward-Backward Splitting

Beginning with an arbitrary x0, and having calculated xk, we let

xk+1 = proxγf1
(xk − γ∇f2(xk)), (32)

with γ chosen to lie in the interval (0, 2/λ). The operator I − γ∇f2 is then averaged.
Since the operator proxγf1

is firmly non-expansive, the sequence {xk} converges to a
minimizer of the function F (x), whenever minimizers exist. It is also possible to allow
γ to vary with the k.
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2.13 The CQ Algorithm as Forward-Backward Splitting
The CQ Algorithm as Forward-Backward Splitting

Recall that the split-feasibility problem (SFP) is to find x in C with Ax in Q. The
CQ algorithm minimizes the function

f(x) = ||PQAx−Ax||22, (33)

over x ∈ C, whenever such minimizers exist, and so solves the SFP whenever it has
solutions. The CQ algorithm therefore minimizes the function

F (x) = ιC(x) + f(x), (34)

where ιC is the indicator function of the set C. With f1(x) = ιC(x) and f2(x) =
f(x), the function F (x) has the form considered by Combettes and Wajs, and the CQ
algorithm becomes a special case of their forward-backward splitting method.

3 Applications of the CQ Algorithm

3.1 Intensity-modulated Radiation Therapy
The Multi-set SFP

Recently, Censor, Elfving, Kopf and Bortfeld [11] have extended the CQ algorithm
to the case in which the sets C and Q are the intersections of finitely many other convex
sets. The new algorithm employs the orthogonal projections onto these other convex
sets.

Intensity-modulated Radiation Therapy
In [12] Censor, Bortfeld, Martin, and Trofimov use this new algorithm to determine

intensity-modulation protocols for radiation therapy. The issue here is to determine the
intensities of the radiation sources external to the patient, subject to constraints on how
spatially varying the machinery permits these intensities to be, on the maximum dosage
directed to healthy areas, and on the minimum dosage directly to the targets.

3.2 The CQ Algorithm in Dynamic ET
The CQ Algorithm in Dynamic ET

The CQ algorithm can be used to reconstruct the time-varying radionuclide distri-
bution within a patient, from emission tomographic scanning data.

Emission Tomography
The objective in ET is to reconstruct the internal spatial distribution of intensity

of a radionuclide from counts of photons detected outside the patient. In static ET
the intensity distribution is assumed constant over the scanning time. Our data are
photon counts at the detectors, forming the positive vector b and we have a matrix A of
detection probabilities; our model is Ax = b, for x a nonnegative vector representing
the radionuclide intensities at each pixel or voxel.

9



Dynamic ET
In dynamic ET (see, for example, the thesis of Farncombe [14]) the intensity levels

at each voxel may vary with time. The observation time is subdivided into, say, T
intervals and one static image, call it xt, is associated with the time interval denoted
by t, for t = 1, ..., T . The vector x is the concatenation of these T image vectors xt.
The discrete time interval at which each data value is collected is also recorded and the
problem is to reconstruct this succession of images. Because the data associated with a
single time interval is insufficient, by itself, to generate a useful image, one often uses
prior information concerning the time history at each fixed voxel to devise a model of
the behavior of the intensity levels at each voxel, as functions of time.

Constraining Behavior in Time
One may, for example, assume that the radionuclide intensities at a fixed voxel are

increasing with time, or are concave (or convex) with time. The problem then is to
find x ≥ 0 with Ax = b and Dx ≥ 0, where D is a matrix chosen to describe this
additional prior information. For example, we may wish to require that, for each fixed
voxel, the intensity is an increasing function of (discrete) time; then we want

xt+1
j − xt

j ≥ 0, (35)

for each t and each voxel index j.

A Second Example of Constraint
We may wish to require that the intensity at each voxel describes a concave function

of time, in which case nonnegative second differences would be imposed:

(xt+1
j − xt

j)− (xt+2
j − xt+1

j ) ≥ 0. (36)

In either case, the matrix D can be selected to include the left sides of these inequalities,
while the set Q can include the nonnegative cone as one factor.

4 Sequential Unconstrained Minimization

4.1 Sequential Unconstrained Minimization
Sequential Unconstrained Minimization

The problem is to minimize a function f(x) over the set C = D in RJ . We assume
that there is x̂ in C with f(x̂) ≤ f(x), for all x in C. In sequential unconstrained
minimization, for k = 1, 2, ..., we minimize

Gk(x) = f(x) + gk(x), (37)

to get xk, which we assume lies within the set D. The issue is how to select the
auxiliary functions gk(x).
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4.2 The SUMMA
SUMMA

In SUMMA we minimize

Gk(x) = f(x) + gk(x), (38)

to get xk, which we assume lies within the set D, with the gk(x) chosen so that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk), (39)

for k = 1, 2, ....

Theorem 3. The sequence {f(xk)} converges to f(x̂).

4.3 The Method of Auslander and Teboulle
Induced Proximal Distance Method

In [3] Auslander and Teboulle consider the sequential unconstrained minimization
method whereby, for each k = 1, 2, ..., we minimize

Fk(x) = f(x) + d(x, xk−1), (40)

to get xk in D. They assume that the distance d(x, y) ≥ 0 has an associated induced
proximal distance H(x, y) satisfying the inequality

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b). (41)

If d(x, y) is a Bregman distance, then H(x, y) = d(x, y).

Theorem 4. The sequence {f(xk)} converges to f(x̂).

If d(x, y) is a Bregman distance, then this method is a particular case of SUMMA,
but, in general, the two methods appear to be unrelated.

4.4 Bregman-Dominated Distances
Bregman-Dominated Distances

Assume that, for each fixed a, the function g(x) = d(x, a) is such that the associ-
ated Bregman distance Da(c, b) can be defined. Then

Da(c, b) = g(c)− g(b)− 〈∇g(b), c− b〉 ≥ 0, (42)

for all suitable b and c. Therefore,

Da(c, b) = d(c, a)− d(b, a)− 〈∇1d(b, a), c− b〉 ≥ 0, (43)

for all suitable b and c. Say that the distance d is Bregman-dominated if

Da(c, b) ≥ d(c, b), (44)

11



for all suitable a, b, and c.
If d is Bregman-dominated, then

d(c, a)− d(b, a)− 〈∇1d(b, a), c− b〉 ≥ d(c, b), (45)

or

〈∇1d(b, a), c− b〉 ≤ d(c, a)− d(c, b)− d(b, a) ≤ d(c, a)− d(c, b). (46)

Consequently, the choice of H = d satisfies the inequality in (41), and such a d fits the
framework of Auslander and Teboulle.

For each k, let Dk(x, y) = Da(x, y), for the choice a = xk−1. Since xk−1 mini-
mizes the function d(x, xk−1), we have

∇1d(xk−1, xk−1) = 0,

and so
Dk(x, xk−1) = d(x, xk−1).

Therefore, xk minimizes the function

Gk(x) = f(x) + Dk(x, xk−1).

It can be shown that

Gk(x)−Gk(xk) = Df (x, xk) + Dk(x, xk) ≥ Dk(x, xk), (47)

assuming, of course, that f is convex.
If the distance d is Bregman-dominated, then we have

Gk(x)−Gk(xk) ≥ Dk(x, xk) ≥ d(x, xk), (48)

so the iteration is a particular case of SUMMA.
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