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The Split Feasibility Problem

Let A be a real M by N matrix, and C and Q non-empty closed,
convex sets in RN and RM , respectively.

The split feasibility problem (SFP) is to find a vector x in C,
such that Ax is in Q.
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The Inconsistent Case

When the SFP has no solution, it is sensible to seek a
minimizer of the function

f (x) =
1
2
||PQAx − Ax ||22, (1)

over x in C; PQ denotes the orthogonal projection onto Q.
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The CQ Algorithm

For arbitrary x0 and k = 0, 1, ..., and γ in the interval
(0, 2/ρ(AT A)), where ρ(AT A) denotes the largest eigenvalue of
the matrix AT A, let

xk+1 = PC(xk − γAT (I − PQ)Axk ). (2)

This is the CQ algorithm [9, 10]. The CQ algorithm converges
to a solution of the SFP, whenever solutions exist. When there
are no solutions of the SFP, the CQ algorithm converges to a
minimizer, over x in C, of the function

f (x) =
1
2
||PQAx − Ax ||22, (3)

whenever such minimizers exist.
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Topics for Discussion:

The proof of convergence of the CQ algorithm;
The algorithm in context- the CQ algorithm has particular
cases, and is, itself, a particular case;
Approximation of the orthogonal projections;
Relation to proximity operators and forward-backward
splitting;
The CQ algorithm and successive orthogonal projection;
Extension to incorporate multiple sets;
Use in radiation therapy;
Use in dynamic emission tomography.
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Proof of Convergence

According to the Krasnoselskii-Mann Theorem [18], if
T : RN → RN is an averaged operator then the sequence
{T kx0} converges to a fixed point of T , whenever fixed points
exist. The operator PC is averaged, since it is firmly
non-expansive, and, for γ in the interval (0, 2/ρ(AT A)), the
operator I − γAT (I − PQ)A is also averaged. The product of
averaged operators is averaged, so the CQ algorithm
converges to a fixed point, if they exist, and these fixed points
also minimize f (x) over x in C.
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Averaged Operators

An operator T : RN → RN is non-expansive (in the Euclidean
norm) if, for all x and y , we have

||Tx − Ty ||2 ≤ ||x − y ||2. (4)

An operator S : RN → RN is averaged [4] if there is a
non-expansive operator T and α in the interval (0, 1), with

S = (1− α)I + αT . (5)
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Details

The function f (x) is convex and differentiable on RN and its
derivative is the operator

∇f (x) = AT (I − PQ)Ax ; (6)

see Aubin [2].
Let h(x) be convex and differentiable and its derivative,
∇h(x), be non-expansive. Then ∇h(x) is firmly
non-expansive; see Golshtein and Tretyakov [15].
The derivative operator ∇f is λ-Lipschitz continuous for
λ = ρ(AT A), therefore the operator I − γ∇f is averaged, for
γ in (0, 2/ρ(AT A)).
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Estimating ρ(AT A)

The CQ algorithm employs the relaxation parameter γ in the
interval (0, 2/ρ(AT A)), where ρ(AT A) is the largest eigenvalue
of the matrix AT A. Choosing the best relaxation parameter in
any algorithm is a nontrivial procedure. Generally speaking, we
want to select γ near to 1/ρ(AT A). A simple estimate for
ρ(AT A) that is particularly useful when A is sparse is the
following: if A is normalized so that each row has length one,
then the spectral radius of AT A does not exceed the maximum
number of nonzero elements in any column of A. A similar
upper bound on ρ(AT A) was obtained for non-normalized,
ε-sparse A [9].
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Particular Cases of the SFP

It is easy to find important examples of the SFP: if C = RJ and
Q = {b} then solving the SFP amounts to solving the linear
system of equations Ax = b; if C is a proper subset of RJ , such
as the nonnegative cone, then we seek solutions of Ax = b that
lie within C, if there are any. Generally, we cannot solve the
SFP in closed form and iterative methods are needed.
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Particular Cases of the CQ Algorithm

A number of well known iterative algorithms, such as the
Landweber [17] and projected Landweber methods (see [8]),
are particular cases of the CQ algorithm.
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The Landweber Algorithm

With x0 arbitrary and k = 0, 1, ..., the Landweber algorithm for
finding a (possibly least-squares) solution of Ax = b has the
iterative step

xk+1 = xk + γAT (b − Axk ). (7)
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The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and
k = 0, 1, ..., the projected Landweber algorithm for finding a
(possibly constrained least-squares) solution of Ax = b in C
has the iterative step

xk+1 = PC(xk + γAT (b − Axk )). (8)
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The Simultaneous ART (SART)

Another example of the CQ algorithm is the simultaneous
algebraic reconstruction technique (SART) of Anderson and
Kak [1] for solving Ax = b, for nonnegative matrix A . Let A be
an M by N matrix with nonnegative entries. Let Am+ > 0 be the
sum of the entries in the mth row of A and A+n > 0 be the sum
of the entries in the nth column of A. Consider the (possibly
inconsistent) system Ax = b. For x0 arbitrary and k = 0, 1, ...,
let

xk+1
n = xk

n +
1

A+n

∑M

m=1
Amn(bm − (Axk )m)/Am+. (9)

This is the SART algorithm. With a change of variables, the
SART becomes a particular case of the Landweber iteration.
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Changing Variables

We make the following changes of variables:

Bmn = Amn/(Am+)1/2(A+n)
1/2, (10)

zn = xn(A+n)
1/2, (11)

and

cm = bm/(Am+)1/2. (12)

Then the SART iterative step can be written as

zk+1 = zk + BT (c − Bzk ). (13)

This is a particular case of the Landweber algorithm, with
γ = 1. The convergence of SART follows, once we know that
the largest eigenvalue of BT B is less than two; in fact, it is one
[9].
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Using the CQ Algorithm

We illustrate the use of the CQ algorithm to prove a
convergence result for the successive orthogonal projections
method for the case of two non-intersecting convex sets.
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The Convex Feasibility Problem

The convex feasibility problem(CFP) is to find a point in the
non-empty intersection C of finitely many closed, convex sets
Cm, m = 1, ..., M, in RN .
The successive orthogonal projections (SOP) method (see
Gubin, Polyak and Raik [16]) is the following. Begin with an
arbitrary x0. For k = 0, 1, ..., and m = k(mod M) + 1, let

xk+1 = Pmxk , (14)

where Pmx denotes the orthogonal projection of x onto the set
Cm.
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The SOP when C is not empty

Since each of the operators Pm is firmly non-expansive, the
product

T = PMPM−1 · · · P2P1 (15)

is averaged. Since C is not empty, T has fixed points and the
sequence {xk} converges to a member of C. It is useful to note
that the limit of this sequence will not generally be the point in
C closest to x0.
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When C is empty

When the intersection C of the convex sets Cm is empty, the
SOP cannot converge. Drawing on our experience with two
special cases of the SOP, the ART and the
Agmon-Motzkin-Schoenberg algorithms, we conjecture that
there is a limit cycle, that is, for each m = 1, ..., M, the
subsequences {xnM+m} converge to c∗,m in Cm, with
Pmc∗,m−1 = c∗,m for m = 2, 3, ..., M, and P1c∗,M = c∗,1; the set
{c∗,m} is then a limit cycle. For the special case of M = 2 we
can prove this. The proof here uses the CQ algorithm.
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The Theorem

Theorem

Let C1 and C2 be nonempty, closed convex sets in RJ , with
C1 ∩ C2 = ∅. Assume that there is a unique ĉ2 in C2 minimizing
the function f (x) = ||c2 − P1c2||2, over all c2 in C2. Let
ĉ1 = P1ĉ2. Then P2ĉ1 = ĉ2. Let z0 be arbitrary and, for
n = 0, 1, ..., let

z2n+1 = P1z2n, z2n+2 = P2z2n+1. (16)

Then

{z2n+1} → ĉ1, {z2n} → ĉ2. (17)
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The Proof

We apply the CQ algorithm, with C = C2, Q = C1, and the
matrix A = I, the identity matrix. The CQ iterative step is now

xk+1 = P2(xk + γ(P1 − I)xk ). (18)

Using the acceptable choice of γ = 1, we have

xk+1 = P2P1xk . (19)

This CQ iterative sequence then converges to ĉ2, the minimizer
of the function f (x). Since z2n = xn, we have {z2n} → ĉ2.
Because

||P2ĉ1 − ĉ1||2 ≤ ||ĉ2 − ĉ1||2, (20)

it follows from the uniqueness of ĉ2 that P2ĉ1 = ĉ2. This
completes the proof.



The Split feasibility Problem and the CQ Algorithm Particular Cases and Extensions Applications of the CQ Algorithm Sequential Unconstrained Minimization

Extending the CQ Algorithm

The CQ algorithm has recently been extended in at least two
different directions: approximating the projection operators; and
taking the C and Q to be intersections of other convex sets. It
can also be viewed as a particular case of forward-backward
splitting.
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Approximating the Projections

The orthogonal projections PC and PQ needed in the iterative
step of the CQ algorithm need not be easy to implement.
Extensions of the CQ algorithm that incorporate approximations
of these projections have been presented by Qu and Xiu [19],
Yang [22], and Zhao and Yang [23].
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Proximal Minimization

The CQ algorithm is a particular case of an iterative algorithm
based on Moreau’s notion of proximity operator.
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Proximity Operators

The Moreau envelope of a convex function f is the function

mf (z) = inf
x
{f (x) +

1
2
||x − z||22}, (21)

which is also the infimal convolution of the functions f (x) and
1
2 ||x ||

2
2. It can be shown that the infimum is uniquely attained at

the point denoted x = proxf z (see Rockafellar [20]). The
function mf (z) is differentiable and ∇mf (z) = z − proxf z. The
point x = proxf z is characterized by the property z − x ∈ ∂f (x).
Consequently, x is a global minimizer of f if and only if
x = proxf x .
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The Conjugate Function

The conjugate function associated with f is the function
f ∗(x∗) = supx(〈x∗, x〉 − f (x)). In similar fashion, we can define
mf∗z and proxf∗z. Both mf and mf∗ are convex and
differentiable.
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Moreau’s Theorem

Theorem
Let f be a closed, proper, convex function with conjugate f ∗.
Then

mf z + mf∗z =
1
2
||z||2;

proxf z + proxf∗z = z;

proxf∗z ∈ ∂f (proxf z);

proxf∗z = ∇mf (z), and

proxf z = ∇mf∗(z). (22)
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An Example

For example, consider the indicator function of the convex set
C, f (x) = ιC(x) that is zero if x is in the closed convex set C
and +∞ otherwise. Then mf z is the minimum of 1

2 ||x − z||22
over all x in C, and proxf z = PCz, the orthogonal projection of z
onto the set C. The operators proxf : z → proxf z are proximity
operators. These operators generalize the projections onto
convex sets, and, like those operators, are firmly non-expansive
(see Combettes and Wajs [13]).
The support function of the convex set C is
σC(x) = supu∈C〈x , u〉. It is easy to see that σC = ι∗C . For
f ∗(z) = σC(z), we can find mf∗z using Moreau’s Theorem:

proxσC
z = z − proxιC

z = z − PCz. (23)
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Using Moreau’s Theorem

The minimizers of mf and the minimizers of f are the same.
From Moreau’s Theorem we know that

∇mf (z) = proxf∗z = z − proxf z, (24)

so ∇mf z = 0 is equivalent to z = proxf z.
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Proximal Minimization

Because the minimizers of mf are also minimizers of f , we can
find global minimizers of f using gradient descent iterative
methods on mf .
Let x0 be arbitrary. Then let

xk+1 = xk − γk∇mf (xk ). (25)

We know from Moreau’s Theorem that

∇mf z = proxf∗z = z − proxf z, (26)

so that Equation (25) can be written as

xk+1 = xk − γk (xk − proxf x
k )

= (1− γk )xk + γk proxf x
k . (27)

It follows from the definition of ∂f (xk+1) that f (xk ) ≥ f (xk+1) for
the iteration in Equation (27).
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Minimizing F (x) = f1(x) + f2(x)

In [13] Combettes and Wajs consider the problem of minimizing
the function F (x) = f1(x) + f2(x), where f2(x) is differentiable
and its gradient is λ-Lipschitz continuous. The function F is
minimized at the point x if and only if

0 ∈ ∂F (x) = ∂f1(x) +∇f2(x), (28)

so we have

−γ∇f2(x) ∈ γ∂f1(x), (29)

for any γ > 0. Therefore

x − γ∇f2(x)− x ∈ γ∂f1(x). (30)

From Equation (30) we conclude that

x = proxγf1(x − γ∇f2(x)). (31)

This suggests an algorithm, called the forward-backward
splitting for minimizing the function F (x).
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Forward-Backward Splitting

Beginning with an arbitrary x0, and having calculated xk , we let

xk+1 = proxγf1(x
k − γ∇f2(xk )), (32)

with γ chosen to lie in the interval (0, 2/λ). The operator
I − γ∇f2 is then averaged. Since the operator proxγf1 is firmly
non-expansive, the sequence {xk} converges to a minimizer of
the function F (x), whenever minimizers exist. It is also possible
to allow γ to vary with the k .
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The CQ Algorithm as Forward-Backward Splitting

Recall that the split-feasibility problem (SFP) is to find x in C
with Ax in Q. The CQ algorithm minimizes the function

f (x) = ||PQAx − Ax ||22, (33)

over x ∈ C, whenever such minimizers exist, and so solves the
SFP whenever it has solutions. The CQ algorithm therefore
minimizes the function

F (x) = ιC(x) + f (x), (34)

where ιC is the indicator function of the set C. With
f1(x) = ιC(x) and f2(x) = f (x), the function F (x) has the form
considered by Combettes and Wajs, and the CQ algorithm
becomes a special case of their forward-backward splitting
method.



The Split feasibility Problem and the CQ Algorithm Particular Cases and Extensions Applications of the CQ Algorithm Sequential Unconstrained Minimization

The Multi-set SFP

Recently, Censor, Elfving, Kopf and Bortfeld [11] have extended
the CQ algorithm to the case in which the sets C and Q are the
intersections of finitely many other convex sets. The new
algorithm employs the orthogonal projections onto these other
convex sets.
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Intensity-modulated Radiation Therapy

In [12] Censor, Bortfeld, Martin, and Trofimov use this new
algorithm to determine intensity-modulation protocols for
radiation therapy. The issue here is to determine the intensities
of the radiation sources external to the patient, subject to
constraints on how spatially varying the machinery permits
these intensities to be, on the maximum dosage directed to
healthy areas, and on the minimum dosage directly to the
targets.
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The CQ Algorithm in Dynamic ET

The CQ algorithm can be used to reconstruct the time-varying
radionuclide distribution within a patient, from emission
tomographic scanning data.
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Emission Tomography

The objective in ET is to reconstruct the internal spatial
distribution of intensity of a radionuclide from counts of photons
detected outside the patient. In static ET the intensity
distribution is assumed constant over the scanning time. Our
data are photon counts at the detectors, forming the positive
vector b and we have a matrix A of detection probabilities; our
model is Ax = b, for x a nonnegative vector representing the
radionuclide intensities at each pixel or voxel.
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Dynamic ET

In dynamic ET (see, for example, the thesis of Farncombe [14])
the intensity levels at each voxel may vary with time. The
observation time is subdivided into, say, T intervals and one
static image, call it x t , is associated with the time interval
denoted by t , for t = 1, ..., T . The vector x is the concatenation
of these T image vectors x t . The discrete time interval at which
each data value is collected is also recorded and the problem is
to reconstruct this succession of images. Because the data
associated with a single time interval is insufficient, by itself, to
generate a useful image, one often uses prior information
concerning the time history at each fixed voxel to devise a
model of the behavior of the intensity levels at each voxel, as
functions of time.
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Constraining Behavior in Time

One may, for example, assume that the radionuclide intensities
at a fixed voxel are increasing with time, or are concave (or
convex) with time. The problem then is to find x ≥ 0 with
Ax = b and Dx ≥ 0, where D is a matrix chosen to describe
this additional prior information. For example, we may wish to
require that, for each fixed voxel, the intensity is an increasing
function of (discrete) time; then we want

x t+1
j − x t

j ≥ 0, (35)

for each t and each voxel index j .
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A Second Example of Constraint

We may wish to require that the intensity at each voxel
describes a concave function of time, in which case
nonnegative second differences would be imposed:

(x t+1
j − x t

j )− (x t+2
j − x t+1

j ) ≥ 0. (36)

In either case, the matrix D can be selected to include the left
sides of these inequalities, while the set Q can include the
nonnegative cone as one factor.
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Sequential Unconstrained Minimization

The problem is to minimize a function f (x) over the set C = D
in RJ . We assume that there is x̂ in C with f (x̂) ≤ f (x), for all x
in C. In sequential unconstrained minimization, for k = 1, 2, ...,
we minimize

Gk (x) = f (x) + gk (x), (37)

to get xk , which we assume lies within the set D. The issue is
how to select the auxiliary functions gk (x).



The Split feasibility Problem and the CQ Algorithm Particular Cases and Extensions Applications of the CQ Algorithm Sequential Unconstrained Minimization

SUMMA

In SUMMA we minimize

Gk (x) = f (x) + gk (x), (38)

to get xk , which we assume lies within the set D, with the gk (x)
chosen so that

0 ≤ gk+1(x) ≤ Gk (x)−Gk (xk ), (39)

for k = 1, 2, ....

Theorem

The sequence {f (xk )} converges to f (x̂).
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Induced Proximal Distance Method

In [3] Auslander and Teboulle consider the sequential
unconstrained minimization method whereby, for each
k = 1, 2, ..., we minimize

Fk (x) = f (x) + d(x , xk−1), (40)

to get xk in D. They assume that the distance d(x , y) ≥ 0 has
an associated induced proximal distance H(x , y) satisfying the
inequality

〈∇1d(b, a), c − b〉 ≤ H(c, a)− H(c, b). (41)

If d(x , y) is a Bregman distance, then H(x , y) = d(x , y).
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Theorem

The sequence {f (xk )} converges to f (x̂).

If d(x , y) is a Bregman distance, then this method is a
particular case of SUMMA, but, in general, the two methods
appear to be unrelated.
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Bregman-Dominated Distances

Assume that, for each fixed a, the function g(x) = d(x , a) is
such that the associated Bregman distance Da(c, b) can be
defined. Then

Da(c, b) = g(c)− g(b)− 〈∇g(b), c − b〉 ≥ 0, (42)

for all suitable b and c. Therefore,

Da(c, b) = d(c, a)− d(b, a)− 〈∇1d(b, a), c − b〉 ≥ 0, (43)

for all suitable b and c. Say that the distance d is
Bregman-dominated if

Da(c, b) ≥ d(c, b), (44)

for all suitable a, b, and c.
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If d is Bregman-dominated, then

d(c, a)− d(b, a)− 〈∇1d(b, a), c − b〉 ≥ d(c, b), (45)

or

〈∇1d(b, a), c − b〉 ≤ d(c, a)− d(c, b)− d(b, a) ≤ d(c, a)− d(c, b).(46)

Consequently, the choice of H = d satisfies the inequality in
(41), and such a d fits the framework of Auslander and
Teboulle.
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For each k , let Dk (x , y) = Da(x , y), for the choice a = xk−1.
Since xk−1 minimizes the function d(x , xk−1), we have

∇1d(xk−1, xk−1) = 0,

and so
Dk (x , xk−1) = d(x , xk−1).

Therefore, xk minimizes the function

Gk (x) = f (x) + Dk (x , xk−1).

It can be shown that

Gk (x)−Gk (xk ) = Df (x , xk ) + Dk (x , xk ) ≥ Dk (x , xk ), (47)

assuming, of course, that f is convex.



The Split feasibility Problem and the CQ Algorithm Particular Cases and Extensions Applications of the CQ Algorithm Sequential Unconstrained Minimization

If the distance d is Bregman-dominated, then we have

Gk (x)−Gk (xk ) ≥ Dk (x , xk ) ≥ d(x , xk ), (48)

so the iteration is a particular case of SUMMA.
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